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ABSTRACT: Super-Resolution reconstruction produces one or a set
of high-resolution images from a sequence of low-resolution frames.
This article reviews a variety of Super-Resolution methods proposed
in the last 20 years, and provides some insight into, and a summary
of, our recent contributions to the general Super-Resolution problem.
In the process, a detailed study of several very important aspects of
Super-Resolution, often ignored in the literature, is presented. Spe-
cifically, we discuss robustness, treatment of color, and dynamic
operation modes. Novel methods for addressing these issues are
accompanied by experimental results on simulated and real data.
Finally, some future challenges in Super-Resolution are outlined and
discussed. © 2004 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 14,
47–57, 2004; Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/ima.20007
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I. INTRODUCTION
On the quest to achieve high resolution imaging systems, one
quickly runs into the problem of diminishing returns. Specifically,
the imaging chips and optical components necessary to capture very
high-resolution images become prohibitively expensive, costing in
the millions of dollars for scientific applications (Parulski et al.,
1992). Super-resolution is the term generally applied to the problem
of transcending the limitations of optical imaging systems through
the use of image processing algorithms, which presumably are
relatively inexpensive to implement. The application of such algo-
rithms will certainly continue to proliferate in any situation where
high-quality optical imaging systems cannot be incorporated or are
too expensive to utilize.

The basic idea behind Super-Resolution is the fusion of a se-
quence of low-resolution noisy blurred images to produce a higher-
resolution image or sequence. Early works on Super-Resolution
showed that the aliasing effects in the high-resolution fused image

can be reduced (or even completely removed), if a relative sub-pixel
motion exits between the undersampled input images (Huang and
Tsai, 1984). However, contrary to the naive frequency domain
description of this early work, we shall see that, in general, super-
resolution is a computationally complex and numerically ill-posed
problem. All this makes Super-Resolution one of the most appealing
research areas for image processing researchers.

Although several articles have surveyed the different classical
Super-Resolution methods and compared their performances (e.g.,
Borman and Stevenson, 1998; Kang and Chaudhuri, 2003), the
intention of this article is to pinpoint the various difficulties inherent
to the Super-Resolution problem for a variety of application settings
often ignored in the past. We review many of the most recent and
popular methods, and outline some of our recent work addressing
these issues.

The organization of this article is as follows. In Section II we
study Super-Resolution as an inverse problem and address related
regularization issues. In Section III we analyze a general model for
imaging systems applicable to various scenarios of Super-Resolu-
tion. In Section IV we describe three different application settings
and our approaches to dealing with them. Specifically, we address
the problem of robust Super-Resolution, the treatment of color
images and mosaiced sources, and dynamic Super-Resolution. Fi-
nally, we conclude with a list of challenges to be addressed in future
work on Super-Resolution.

II. SUPER-RESOLUTION AS AN INVERSE PROBLEM
Super-resolution algorithms attempt to extract the high-resolution
image corrupted by the limitations of the optical imaging system.
This type of problem is an example of an inverse problem, wherein
the source of information (high-resolution image) is estimated from
the observed data (low-resolution image or images). Solving an
inverse problem in general requires first constructing a forward
model. By far, the most common forward model for the problem of
Super-Resolution is linear in form:

Y�t� � M�t�X�t� � V�t�, (1)

where Y is the measured data (single or collection of images), M
represents the imaging system, X is the unknown high-resolution
image or images, V is the random noise inherent to any imaging
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system, and t represents the time of image acquisition. We use the
underscore notation such as X to indicate a vector. In this formula-
tion, the image is represented in vector form by scanning the 2D
image in a raster or any other scanning format1 to 1D.

Armed with a forward model, the practitioner of Super-Resolu-
tion must explicitly or implicitly [e.g. the POCS-based methods of
Patti et al. (1997)] define a cost function to estimate X (for now we
ignore the temporal aspect of Super-Resolution). This type of cost
function assures a certain fidelity or closeness of the final solution to
the measured data. Historically, the construction of such a cost
function has been motivated from either an algebraic or a statistical
perspective. Perhaps the cost function most common to both per-
spectives is the least-squares (LS) cost function, which minimizes
the L2 norm of the residual vector,

X̂ � argmin
X

J�X� � argmin
X

�Y � MX�2
2. (2)

For the case where the noise V is additive white, zero mean Gauss-
ian, this approach has the interpretation of providing the maximum
likelihood estimate of X (Elad and Feuer, 1997). We shall show in
this paper that such a cost function is not necessarily adequate for
Super-Resolution.

An inherent difficulty with inverse problems is the challenge of
inverting the forward model without amplifying the effect of noise
in the measured data. In the linear model, this results from the very
high, possibly infinite, condition number for the model matrix M.
Solving the inverse problem, as the name suggests, requires invert-
ing the effects of the system matrix M. At best, this system matrix
is ill conditioned, presenting the challenge of inverting the matrix in
a numerically stable fashion (Golub and Loan, 1994). Furthermore,
finding the minimizer of (2) would amplify the random noise V in
the direction of the singular vectors (in the Super-Resolution case
these are the high spatial frequencies), making the solution highly
sensitive to measurement noise. In many real scenarios, the problem
is worsened by the fact that the system matrix M is singular. For a
singular model matrix M, there is an infinite space of solutions
minimizing (2). Thus, for the problem of Super-Resolution, some
form of regularization must be included in the cost function to
stabilize the problem or constrain the space of solutions.

Traditionally, regularization has been described from both the
algebraic and statistical perspectives. In both cases, regularization
takes the form of constraints on the space of possible solutions often
independent of the measured data. This is accomplished by way of
Lagrangian type penalty terms as in

J�X� � �Y � MX�2
2 � ���X�. (3)

The function �(X) poses a penalty on the unknown X to direct it to
a better formed solution. The coefficient � dictates the strength with
which this penalty is enforced. Generally speaking, choosing �
could be either done manually, using visual inspection, or automat-
ically using methods like generalized cross-validation (Lukas, 1993;
Nguyen et al., 2001a) L-curve (Hansen and O’Leary, 1993) and
other techniques.

Tikhonov regularization, of the form �(X) � �TX�2
2, is a widely

employed form of regularization, where T is a matrix capturing some
aspect of the image such as its general smoothness. This form of
regularization has been motivated from an analytic standpoint to
justify certain mathematical properties of the estimated solution. For
instance, a minimal energy regularization (T � I) easily leads to a
provably unique and stable solution. Often, however, little attention
is given to the effects of such simple regularization on the super-
resolution results. For instance, the regularization often penalizes
energy in the higher frequencies of the solution, opting for a smooth
and hence blurry solution. From a statistical perspective, regulariza-
tion is incorporated as a priori knowledge about the solution. Thus,
using the maximum a-posteriori (MAP) estimator, a much richer
class of regularization functions emerges, enabling us to capture the
specifics of the particular application [e.g., Schultz and Stevenson
(1996) captured the piecewise-constant property of natural images
by modeling them as Huber-Markov random field data].

Unlike the traditional Tikhonov penalty terms, robust methods
are capable of performing adaptive smoothing based on the local
structure of the image. For instance, in Section IV.A we offer a
penalty term capable of preserving the high-frequency edge struc-
tures commonly found in images. The edge-preserving property of
this method has been extensively studied (Elad, 2002; Farsiu et al.,
2004a; Rudin et al., 1992; Sochen et al., 1998).

In recent years there has also been a growing number of learn-
ing-based MAP methods, where the regularization-like penalty
terms are derived from collections of training samples (Atkins et al.,
1999; Baker and Kanade, 2002; Haber and Tenorio, 2003; Zhu and
Muford, 1997). For example, in Baker and Kanade (2003) an ex-
plicit relationship between low-resolution images of faces and their
known high-resolution image is learned from a face database. This
learned information is later used in reconstructing face images from
low-resolution images. Because of the need to gather a vast amount
of examples, often these methods are effective when applied to very
specific scenarios, such as faces or text.

Needless to say, the choice of regularization plays a vital role in
the performance of any Super-Resolution algorithm.

III. ANALYSIS OF THE FORWARD MODEL
A. General Structure of the Linear Model. In this section,
we focus on the construction of the model matrix M. Specifically,
we explore the effects of various modeling assumptions relating
to the computational efficiency and performance of Super-Reso-
lution algorithms. Primarily, the three terms necessary to capture
the image formation process are image motion, optical blur, and
the sampling process. These three terms can be modelled as
separate matrices by

M � DAHF, (4)

where F represents the intensity conserving, geometric warp oper-
ation capturing image motion, H is the blurring operation due to the
optical point spread function2 (PSF), and D and A represent the
effect of sampling by the image sensor. We use both D and A to

1 Note that this conversion is semantic and bears no loss in the description of the
relation between measurements and ideal signal.

2 A more general imaging model is defined as M�DAHFHatm, where Hatm repre-
sents the effect of the atmosphere and motion blur (Lertrattanapanich and Bose, 2002).
However, as in conventional imaging systems (such as video cameras), camera lens/
CCD blur has more important effect than the atmospheric blur (which is very important
for astronomical images), the effect of Hatm is usually ignored in the literature (Farsiu
et al., 2004a).
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distinguish between a generic down-sampling operation (or CCD
decimation by a factor r) and the sampling operations specific to the
color space (color filter effects). Although each of these components
could in theory vary in time, for most situations, the down-sampling

and blurring operations remain constant over time. Figure 1 illus-
trates the effect of each term in (4).

In ideal situations these modeling terms would capture the actual
effects of the image formation process. In practice, however, the
models used reflect a combination of computational and statistical
limitations. For instance, it is common to assume simple parametric
space-invariant blurring functions for the imaging system. This
allows the practitioner to utilize efficient and stable algorithms for
estimating an unknown blurring function. Or, the choice of resolu-
tion enhancement factor r often depends on the number of available
low-resolution frames, the computational limitations (exponential in
r), and the accuracy of motion estimates. Although this approach is
reasonable, it must be understood that incorrect approximations can
lead to significant reduction in overall performance.

In our experience, the performance of motion estimation is of
paramount importance to the performance of Super-Resolution. In
fact, we offer the observation that difficulties in estimating motion
represent the limiting factor in practical Super-Resolution. In reality,
performance of motion estimation techniques is highly dependent on
the complexity of actual motion. For instance, estimating the com-
pletely arbitrary motion encountered in real-world image scenes is
an extremely difficult task with almost no guarantees of estimator
performance. In practice, incorrect estimates of motion have disas-
trous implications on overall Super-Resolution performance (Farsiu
et al., 2004a). In another aspect of our work, we have studied

Figure 1. Block diagram representation of (4), where X is the original
high-resolution color image, V is the additive noise, and Y is the
resulting low-resolution blurred color filtered image.

Figure 2. Effect of up-sampling DT matrix on a 3 � 3 image and
down-sampling matrix D on the corresponding 9 � 9 up-sampled
image (resolution enhancement factor of 3). In this figure, to give a
better intuition the image vectors are reshaped as matrices.

Figure 3. MDSP Resolution Enhancement Program screenshot.
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fundamental performance limits for image registration (Robinson
and Milanfar, 2004). We shall say more on this topic later.

B. Computational Aspects of Super-resolution.
A characteristic difficulty of the Super-Resolution problem is the
dimensionality of the problem. This difficulty will be influenced
both by the dimensionality of the unknown, X, and the dimension of
the measurement vector, Y, and in both cases these numbers in the
hundreds of thousands and beyond. The dimensionality of the prob-
lem demands high computational efficiency of any algorithm, if the
algorithm is to be of practical utility. One such mechanism for
simplifying the problem of Super-Resolution comes from a careful
study of particular modeling scenarios. This theme plays a vital role
in the work presented in this paper. This dimensionality problem is
also the reason for the popularity of iterative solvers for the super-
resolution problem in general.

For the case of quadratic penalty terms (LS) and Tikhonov
regularization, the task of minimization is reduced to that of solving
a very large linear system of equations. Many novel and powerful
algebraic techniques have been proposed to minimize the complex-
ity and maximize the performance for this class of routines. For
example, Nguyen et al. (2001) propose efficient block circulant
preconditioners to accelerate convergence of a conjugate gradient
minimization algorithm. Although these methods are mathemati-
cally justifiable and numerically stable, they often belie a depen-
dence on unrealistic assumptions such as perfect motion estimation.
As we shall show, applying nonquadratic penalty terms offers much
in the way of accuracy and at the same time realizing important
speedups in minimization.

The speedup comes from the application of the matrix operators
F, H, D, A, and their transposes directly as the corresponding image
operations of shifting, blurring, and decimation (Zomet and Peleg,
2000; Farsiu et al., 2004a). For example, the operation of the
decimation (down-sampling) matrix D and its transpose (up-sam-
pling) matrix DT is illustrated in Figure 2. Application of these
operations in the image domain obviates the need to explicitly
construct the matrices.

Throughout this article, we focus on the simplest of motion
models, namely the translational model. The reasons for this are
several. First, there exist efficient and accurate estimation algorithms
with well studied performance limits (Robinson and Milanfar, 2004;
Lin and Shun, 2004). Second, although simple, the model fairly well
approximates the motion contained in image sequences where the
scene is stationary and only the imaging system moves. Third, for
sufficiently high frame rates most motion models can be (at least
locally) approximated by the translational model. Finally, and most
importantly, we believe that an in-depth study of this simple case
allows much insight to be gained about the problems inherent to
Super-Resolution.

One interesting implication of the translational motion model is
the ability to greatly simplify the task of Super-Resolution. If the
optical blur of the imaging system is translation invariant, then the
order of the operations of the image shift and image blur are
commutative (Elad and Hel-Or, 2001). By substituting Z � HX, the
inverse problem may be separated into the much simpler sub-tasks
of fusing the available images to estimate the blurry image Z
followed by a deblurring/interpolation step estimating X from Ẑ, the
estimate of the blurred image. In Section IV, we make use of this
property to explain and construct highly efficient Super-Resolution
algorithms.

IV. RECENT WORK
In this section, we explore three specific Super-Resolution scenarios,
each of which addresses a particular aspect of the general super-
resolution challenge. Also, we highlight some of the important
contributions we have made to each scenario. These scenarios have
emerged from our effort to create a general Super-Resolution soft-
ware tool capable of handling a wide variety of input image data.
Figure 3 shows a sample screenshot of our Super-Resolution tool.3

It is our hope that this work provides the foundation for future work
addressing the more complete Super-Resolution problem.

A. Robust Super-resolution. As indicated in Section III, often
the parameters of the imaging system (such as motion and PSF)
must be either assumed or estimated from the data to construct a
forward model. When the terms in the model are assumed or
estimated incorrectly, the data no longer match the model, leading to
data outliers. Outliers, which are defined as data points with differ-
ent distributional characteristics than the assumed model, will pro-
duce erroneous estimates when a nonrobust algorithm is applied. We
have previously addressed (Farsiu et al., 2003a, 2004a) the problem
of estimating a single high-resolution monochrome image X from a
collection of low resolution images Y(t).

Drawing on the theory of robust statistics (Huber, 1981), we have
developed a novel framework combining a robust data fidelity term
and robust regularization term to build an efficient Super-Resolution
framework exhibiting improved performance for real-world image
sequences. It has been shown (Huber, 1981) that the LS type
estimator of (2) is highly susceptible to the presence of outliers in
the data, producing quite poor results. The lack of robustness is
attributed to the use of the L2 norm to measure data fidelity, which
is only optimal for the case of Gaussian noise. A statistical study of
the noise properties found in many real image sequences, however,
suggests a heavy-tailed noise distribution such as Laplacian (Farsiu
et al., 2003b). Instead of LS, we propose an alternate data fidelity
term based on the L1 norm, which has been shown to be very robust
to data outliers. Also, we propose a novel regularization term called
Bilateral-TV, which provides robust performance while preserving
the edge content common to real image sequences. The proposed
method is a generalization of the Total Variation principle of Rudin
et al. (1992), which has been proposed as an edge-preserving reg-
ularization term.

Combining these two terms, we formulate our robust estimation
framework as the following cost function4

J�X� � ��t

�D�t�H�t�F�t�X � Y�t��1

� � �
l��P

P �
m�0

P

l � m � 0

� �m���l� �X � Sx
l Sy

mX�1� , (5)

3 All the multiframe Super-Resolution methods (robust, color, demosaic, dynamic)
discussed in this section plus many other Super-Resolution and motion estimation
methods have been included in our software package. More information on this software
tool is available at http://www.ee.ucsc.edu/�milanfar

4 In this section we only consider the resolution enhancement problem for mono-
chromatic images. Later, in Section IV.B, we extend this method for the case of color
Super-Resolution.

50 Vol. 14, 47–57 (2004)



where the first expression is relating the measurements to the desired
image X through the model we described. Sx

l and Sy
m are the operators

corresponding to shifting the image represented by X by l pixels in
the horizontal direction and m pixels in the vertical direction, re-
spectively. These act as derivatives across multiple scales. The
scalar weight �, 0 � � � 1, is applied to give a spatially decaying
effect to the summation of the regularization term. The shifting and
differencing operations are very cheap to implement.

As mentioned in Section II, for the special case of translational
motion and common space invariant blurring operation, where the
blur and motion operators commute, we suggest a very efficient
two-stage method for minimizing (5). The optimality of this method
was extensively discussed in (Farsiu et al., 2004a). The first stage
estimates the blurry high-resolution image Z from the collection of
low resolution images as

Ẑ � argmin
Z

��
t

�DF�t�Z � Y�t��1�. (6)

We showed (Farsiu et al, 2004a) that for a given high-resolution
pixel this cost function is minimized by performing a pixel-wise
median of all the measurements after proper zero filling and motion
compensation. We call this operation Median Shift-And-Add, which
bears some similarity to the median-based algorithm proposed by
Zomet et al. (2001).

The second stage of deblurring/interpolating the image Ẑ is
performed using an iterative minimization method. This step is both
a deblurring and interpolation step because it is possible to have no
measurements associated with some pixels in the image Ẑ defined on
the high-resolution grid. The following expression formulates our
minimization criterion for obtaining X̂ from Ẑ:

X̂ � argmin
X ��B�HX � Ẑ��1

� � �
l��P

P �
m�0

P

l � m � 0

��m���l��X � Sx
l Sy

mX�1�. (7)

Again, we see that the first term encourages a robust fidelity to the
fused image Ẑ and the second term represents the robust regulariza-
tion term. Here, the matrix B is a diagonal matrix with diagonal
values equal to the square root of the number of measurements that
contributed to make each element of Ẑ. This weighting ensures that
pixels of Ẑ that have more measurements are weighted higher than
those that have little or no measurements.

As an example, Figure 4(a) shows one of 55 images captured
with a commercial web camera. In this sequence, two separate
sources of motion were present. First, randomly shaking the camera
introduced approximately global translational motion between each
frame. Second, the alpaca statue was repositioned several times
throughout the input frames [notice this relative motion in Figs. 4(a)
and 4(b)]. The nonrobust L2 norm reconstruction with Tikhonov
regularization results in Figure 4(d) where the shadow-like artifacts
to left of the alpaca due to the alpaca motion are apparent. The

robust estimation methods, however, reveal the ability of the algo-
rithm to remove such artifacts from the image as shown in Figures
4(e) and 4(f). Here, we also see that the performance of the faster
method shown in Figure 4(f) is almost as good as the optimal
method shown in Figure 4(e).

B. Robust Multiframe Demosaicing and Color Super-Res-
olution. There is very little work addressing the problem of color
Super-Resolution, and the most common solution involves applying
monochrome Super-Resolution algorithms to each of the color chan-
nels independently (Tom and Katsaggelos, 2001). Another approach
is transferring the problem to a different color space where chromi-
nance layers are separated from luminance, and where Super-Res-
olution is applied to the luminance channel only (Irani and Peleg,
1991). In this section, we review the work of Farsiu et al. (2004),
which details the problems inherent to color Super-Resolution and
proposes a novel algorithm for producing a high-quality color image
from a collection of low-resolution color-filtered images.

A color image is represented by combining three separate mono-
chromatic images. Ideally, each pixel reflects three data measure-
ments: one for each of the color bands. In practice, to reduce
production cost, many digital cameras have only one color measure-
ment (red, green, or blue) per pixel. The detector array is a grid of
CCDs, each made sensitive to one color by placing a color filter
array (CFA) in front of the CCD. The Bayer pattern shown on the
left-hand side of Figure 5 is a very common example of such a color
filter. The values of missing color bands at every pixel are often
synthesized using some form of interpolation from neighboring
pixel values. This process is known as color demosaicing.

Numerous single-frame demosaicing methods have been pro-
posed through the years (see, e.g., Alleysson et al., 2002; Hel-Or and
Keren, 2002; Keren and Osadchy, 1999; Kimmel, 1999; Laroche
and Prescott, 1994), yet almost none of them [but Zomet and Peleg’s
(2002) method] to date are directly applicable to the problem of
multiframe color demosaicing. In fact, the geometry of the single-
frame and multi-frame demosaicing problems are fundamentally
different, making it impossible to simply cross-apply traditional
demosaicing algorithms to the multiframe situation. To better un-
derstand the multiframe demosaicing problem, we offer an example
for the simple case of translational motion. Figure 5 illustrates the
pattern of sensor measurements in the high-resolution image grid. In
such situations, the sampling pattern is quite arbitrary depending on
the relative motion of the low-resolution images. This necessitates a
different demosaicing algorithm than those designed for the original
Bayer pattern.

The challenge of multiframe color Super-Resolution is much
more difficult than that of monochrome imaging and should not be
solved by applying monochrome methods for several reasons. First,
the additional down-sampling (matrix A) of each color channel due
to the color filter array makes the independent reconstruction of each
channel much harder. For many situations, the information con-
tained in a single color channel is insufficient to solve such a highly
ill-posed problem, and therefore acceptable performance is virtually
impossible to achieve. Second, there are natural correspondences
between the color channels that should be leveraged during the
reconstruction process. Third, the human visual system is very
sensitive to certain artifacts in color images which can only be
avoided by processing all of the color channels together. Merely
applying a simple demosaicing algorithm prior to Super-Resolution
would only amplify such artifacts and lead to suboptimal perfor-
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mance. Instead, all three channels must be estimated simultaneously
to maximize the overall color Super-Resolution performance.

We proposed (Farsiu et al., 2004), a computationally efficient
method to fuse and demosaic a set of low-resolution color frames
(which may have been color filtered by any CFA) resulting in a color
image with higher spatial resolution and reduced color artifacts. To
address the challenges specific to color Super-Resolution, additional
regularization penalty functions are required. To facilitate the ex-
planation, we represent the high-resolution color channels as XG, XB,
and XR. The final cost function consists of the following terms:

1) Data Fidelity: Again, we choose a data fidelity penalty term
using the L1 norm to add robustness:

J�X� � �
i�R,G,B

�
t�1

N

��D�t�AiH�t�F�t�Xi � Yi�t���1,

where Ai and Yi(t) are the red, green, or blue components of the color
filter and the low-resolution frame, respectively. As in the previous

section, the fast two-stage method for the case of constant, space-
invariant blur and global translation is also applicable to the multi-
frame demosaicing method, leading to an initial Median Shift-And-
Add operation on Bayer-filtered low-resolution data followed by a
deblurring step. Thus, the first stage of the algorithm is the Median
Shift-And-Add operation of producing a blurry high-resolution im-
age ẐR,G,B (e.g., the left side of the accolade in Fig. 5). In this case,
however, the median operation is applied in a pixel-wise fashion to
each of the color channels independently (for more details, see
Farsiu et al., 2004).

2) Luminance Regularization: Here, we use a penalty term reg-
ularizing the luminance component of the high-resolution
image instead of each color channel separately. This is be-
cause the human eye is more sensitive to the details in the
luminance component of an image than the details in the
chrominance components (Hel-Or and Keren, 2002). There-
fore, we apply the Bilateral-TV regularization to the lumi-
nance component to offer robust edge preservation. The lu-
minance image can be calculated as the weighted sum XL

Figure 4. Results of different resolution enhancement methods applied to the alpaca sequence. Outlier effects are apparent in the nonrobust
reconstruction method (d). However, the robust methods (e)–(f) were not affected by the outliers.
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� 0.299XR � 0.597XG � 0.114XB as explained by Pratt
(2001). The luminance regularization term is similar to (5) in
Section IIIA:

J1�X� � �
l��P

P �
m�0

P

l � m � 0

� �m���l��XL � Sx
l Sy

mXL�1. (8)

3) Chrominance Regularization: This penalty term ensures the
smoothness in the chrominance components of the high-
resolution image. This removes many of the color artifacts
objectionable to the human eye. Again, the two chrominance
channels XC1 and XC2 can be calculated as the weighted
combination of the RGB images using the weights (�0.169,
�0.331, 0.5) for C1 and (0.5, �0.419, �0.081) for C2 (Pratt,
2001). As the human eye is less sensitive to the chrominance
channel resolution, it can be smoothed more aggressively.
Therefore, the following regularization is an appropriate
method for smoothing the chrominance term:

J2�X� � �	XC1�2
2 � �	XC2�2

2, (9)

where 	 is the matrix realization of a high-pass operator such as the
Laplacian filter.

4) Orientation Regularization: This term penalizes the nonho-
mogeneity of the edge orientation across the color channels.
Although different bands may have larger or smaller gradient
magnitudes at a particular edge, it is reasonable to assume that

Figure 5. Fusion of 7 Bayer pattern low-resolution images with relative
translational motion (the figures in the left side of the accolade) results in
a high-resolution image (Ẑ) that does not follow a Bayer pattern (the
figure in the right side of the accolade). The symbol “?” represents the
high-resolution pixel values that were undetermined after the Shift-And-
Add step (as a result of insufficient low-resolution frames).

Figure 6. A high-resolution image (a) is passed through our model of camera to produce a set of low-resolution images. One of these
low-resolution images, demosaiced by Laroche and Prescott’s (1994) method, is shown in (b). The result of super-resolving each color band
separately, considering only bilateral regularization, is shown in (c). And, finally, (d) is the result of applying the proposed method to this data set
(factor of 4 resolution enhancement).
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all color channels have the same edge orientation. That is, if
a vertical (or horizontal) edge appears in the red band, a
vertical (or horizontal) edge with similar orientation in the
same location is likely to appear in the green and blue bands.
Following Keren and Osadchy (1999), minimizing the vector
product norm of any two adjacent color pixels forces different
bands to have similar edge orientation. With some modifica-
tions to what was proposed by Keren and Osadchy (1999),
our orientation penalty term is a differentiable cost function:

J3�X� � �
l��1

1 �
m�0

1

l � m � 0

��XG J Sx
l Sy

mXB � XB J Sx
l Sy

mXG�2
2 � �XB J Sx

l Sy
mXR

� XR J Sx
l Sy

mXB�2
2 � �XR J Sx

l Sy
mXG � XG J Sx

l Sy
mXR�2

2� (10)

where J is the element-by-element multiplication operator.
The overall cost function is the summation of the cost functions

described in the previous subsections:

X̂ � argmin
X


J�X� � �1J1�X� � �2J2�X� � �3J3�X��. (11)

We previously proposed (Farsiu et al., 2004) a method for applying
a steepest descent algorithm to minimize this cost function. Inter-
estingly, this cost function can also be applied to color images where
an unknown demosaicing algorithm has already been applied prior
to the Super-Resolution process.

Figure 6 illustrates the performance of the proposed method with
respect to other methods. Figure 6(a) shows an image acquired with
a high-resolution 3-CCD camera. A set of 10 low-resolution color
filtered images was constructed following the forward imaging
model to simulate the effect of imaging with a low-resolution single
CCD Bayer-CFA camera. Figure 6(b) shows one of these images
demosaiced by the method of Laroche and Prescott (1994), which is
employed in Kodak DCS-200 digital cameras (Ramanath et al.,
2002). In Figure 6(c) the method of Farsiu et al. (2004a) is used to
fuse these images and increase the resolution by a factor of 4 in each
color band, independently. The color artifacts are still apparent in
this result. The result of applying our method on this sequence is
shown in Figure 6(d), where color artifacts are significantly reduced.

As mentioned earlier, that this method may also be applied to a
set of color low-resolution frames previously demosaiced to enhance
their spatial resolution while reducing color artifacts. Figure 7 offers
an example of this application on a real data sequence courtesy of
Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. The available
color images were previously demosaiced using an unknown algo-
rithm. Clearly, the color artifacts are reduced using our method.

C. Dynamic Super-Resolution. In this section we address the
computational challenges inherent to dynamic Super-Resolution. By
dynamic Super-Resolution, we refer to the situation in which a
sequence of high-resolution images are estimated from a sequence
of low-resolution frames. Although it may appear that this problem
is a simple extension of the static Super-Resolution situation, the
memory and computational requirements for the dynamic case are
so taxing as to preclude its application without highly efficient
algorithms. We review the method introduced previously (Farsiu et
al., 2004b), which offers an extremely efficient recursive algorithm

for dynamic Super-Resolution. Although such a recursive solution
for Super-Resolution has been addressed before (Elad and Feuer,
1999), we now show the speedups applicable for the case of trans-
lational motion and common space-invariant blur. This simplified
model empowers us to use the two step algorithm that was described
in Section IV.A for solving the dynamic case.

According to (1), we set up the forward model of the dynamic
Super-Resolution problem as

Y�t� � DH�t�F�t�X�t� � V�t�. (12)

An efficient and intuitive approach of acquiring the high-resolu-
tion image is using weighted least square optimization (Elad and
Feuer, 1999):

X̂�t� � argmin
X

��
��0

N�1

	��DHFT�t � ��X�t� � Y�t � ���2
2�, (13)

where 	 is a parameter between 0 and 1. The weighting 	� places
more emphasis on recent image data than on previous data. Note that

Figure 7. Multi-frame color Super-Resolution implemented on a
real-world data sequence. (a) shows one of the input low-resolution
images and (b) is the result of implementing the proposed method
which has increased the spatial resolution by a factor of 4, removed
the compression artifacts, and also reduced the color artifacts.
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in order to consider the varying reliability of measurements gathered
at each location, the weighting can also be applied on a pixel-by-
pixel basis [(Farsiu et al., 2004b)]. We use the L2 norm to follow
Elad and Feuer’s (1999) model (a robust data fusion term using L1

norm minimization is part of our ongoing work).
As before, we first consider the estimation of the unknown blurry

high-resolution image Z(t) before considering the task of deblurring.
For this formulation, we have shown (Farsiu et al., 2004) that the
update of the blurry high-resolution estimate is given by the recur-
sive equation (14) below. Note that only those pixels in the high-
resolution image that have new measurements from Y(t) are updated,
and all other pixels are left unaltered. The pixels that satisfy this
criterion (indexed by m) are updated according to


Z�t��m �
1

1 � 
m�t�

DTY�t��m �


m�t�

1 � 
m�t�

F�t�Z�t � 1��m. (14)

The adaptive weighting is given by the recursive equation


m�t� � 
1 � 
m�t � t���	t�t�, (15)

where t� represents the most recent time from time t in which a
low-resolution pixel measurement was used to update pixel m. This
type of weighting encourages a larger forgetting factor when the
high-resolution pixels have not been updated recently.

Such a recursive solution shows that there is no need to keep any
previous low-resolution frames (except the most recent one) in
memory. Only the high-resolution image estimate Ẑ(t) at any given
time and a same size weighting image containing the updated 

values of corresponding pixels, need to be stored in memory, leading
to a very memory-efficient algorithm. Furthermore, the update op-
eration is simply shifting the previous estimate Ẑ(t � 1) and updat-
ing the proper pixels using (14). Note that a Kalman filtering
approach provides another recursive solution that offers a more
mathematically justifiable estimate of the fused image Ẑ(t). This
additional approach is studied in Farsiu et al. (2004b).

At this point, we have an efficient recursive estimation algorithm
producing estimates of the blurry high-resolution images sequence
Ẑ(t). From these frames, the sequence X̂(t) must be estimated. Note
that the first few frames will not have estimates for every pixel in
Ẑ(t), necessitating a further joint interpolation and deblurring step.
To perform robust deblurring and interpolation, we utilize a similar
cost function as (7) for every time t:

X̂�t� � argmin
X�t� ��B�HX�t� � Ẑ�t���2

2 � � �
l��P

P �
m�0

P

l � m � 0

��m���l��X � Sx
l Sy

mX�1�.

(16)

Here, the matrix B is a diagonal matrix whose values are
chosen relative to both the number of measurements that con-
tributed to make each element of Ẑ(t) and their time lag with
respect to the current estimate. This is the primary distinction
between (16) and (7).

To improve the speed of the entire algorithm, we propose using
the shifted version of the previous high-resolution estimate
F(t)X̂(t � 1) as the initial guess for X̂(t). For most applications, this

allows the iterative deblurring algorithm to converge in only a few
steps.

Figure 8 shows an example of the dynamic Super-Resolution
algorithm for a couple of frames of a 300-frame video sequence. The
deblurred images (c) and (f) show the benefits achieved by only a
few iterations of deblurring with the proper initial guess.

V. SUMMARY AND FURTHER CHALLENGES
In Section IV we presented only a few methods and insights for
specific scenarios of Super-Resolution. Many questions still persist
in developing a generic Super-Resolution algorithm capable of
producing high-quality results on general image sequences. In this
section, we outline a few areas of research in Super-Resolution that
remain open. The types of questions to be addressed fall into mainly
two categories. The first concerns analysis of the performance limits
associated with Super-Resolution. The second is that of Super-
Resolution system level design and understanding.

A thorough study of Super-Resolution performance limits will
have a great effect on the practical and theoretical activities of the
image reconstruction community. In deriving such performance
limits, one gains insight into the difficulties inherent to super-
resolution. One example of recent work addressing the limitations of
optical systems is given by Sharam and Milanfar (2004), where the
objective is to study how far beyond the classical Rayleigh resolu-
tion limit one can reach at a given signal to noise ratio. Another
recent study (Baker and Kanade, 2002), shows that, for a large
enough resolution enhancement factor, any smoothness prior will
result in reconstructions with very little high-frequency content. Lin
and Shum (2004), for the case of translational motion, studied limits
based on a numerical perturbation model of reconstruction-based
algorithms. However, the question of an optimal resolution factor (r)
for an arbitrary set of images is still wide open. Also, the role of
regularization has never been studied as part of the analysis is
proposed. Given that it is the regularization that enables the recon-
struction in practice, any future contribution of worth on this matter
must take it into effect.

Systematic study of the performance limits of Super-Resolution
would reveal the true information bottlenecks, hopefully motivating
focused research to address these issues. Furthermore, analysis of
this sort could possibly provide understanding of the fundamental
limits to the Super-Resolution imaging, thereby helping practitioners
to find the correct balance between expensive optical imaging sys-
tem and image reconstruction algorithms. Such analysis may also be
phrased as general guidelines when developing practical super-
resolution systems.

In building a practical Super-Resolution system, many important
challenges lay ahead. For instance, in many of the optimization
routines used in this and other articles, the task of tuning the
necessary parameters is often left up to the user. Parameters such as
regularization weighting � can play an important role in the perfor-
mance of the Super-Resolution algorithms. Although the cross-
validation method can be used to determine the parameter values for
the nonrobust Super-Resolution method (Nguyen et al., 2001a), a
computationally efficient way of implementing such method for the
robust Super-Resolution case has not yet been addressed.

Although some work has addressed the joint task of motion
estimation and Super-Resolution (Hardie et al., 1997; Schultz et al.,
1998; Tom and Katsaggelos, 2001), the problems related to this still
remain largely open. Another open challenge is that of blind super-
resolution wherein the unknown parameters of the imaging system’s
PSF must be estimated from the measured data. Many single-frame
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blind deconvolution algorithms have been suggested in the last 30
years (Kondur and Hatzinakos, 1996), and recently (Nguyen et al.,
2001a) incorporated a single parameter blur identification algorithm
in their Super-Resolution method, but there remains a need for more
research to provide a Super-Resolution method along with a more
general blur estimation algorithm from aliased images. Also, re-
cently the challenge of simultaneous resolution enhancement in time
as well as space has received growing attention (Robertson and
Stevenson 2001; Shechtman et al., 2002).

Finally, it is the case that the low-resolution images are often, if
not always, available in compressed format. Although a few articles
have addressed resolution enhancement of DCT-based compressed
video sequences (Segall et al., 2001; Altunbasak et al., 2002), the
more recent advent and utilization of wavelet-based compression
methods requires novel adaptive Super-Resolution methods. Adding
features such as robustness, memory and computation efficiency,
color consideration, and automatic selection of parameters in super-
resolution methods will be the ultimate goal for the Super-Resolu-
tion researchers and practitioners in the future.
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