
Image Inpainting with the
Navier-Stokes Equations

Wilson Au, wilsona@sfu.ca Ryo Takei, rrtakei@sfu.ca

Final Report, APMA 930

Abstract
Image inpaining “involves filling in part of an image (or video) using information

for the surrounding area”([1]). This report summarizes an application of numerical
solutions to the Navier-Stokes equations for this well-studied image processing problem.
It exploits the remarkable relationship between the steady state solution of the
streamfunction in fluid flow and the (grayscale) image intensity level in image
processing.
This report is a follow-up of an approach first discovered in 2001 by A. Bertozzi, et. al
in [1].

1 Preliminaries and Motivation

Image inpainting (from hereon, simply inpainting) is the technique of filling in a region of
an image based on the information outside the region. The distinction between inpainting
and denoising should be made clear: deblurring generally attemps to modify regions that
are individual pixels, while inpainting involves modifying a larger area. Applications
for inpainting are generally to remove unwanted patterns in photos, from scratches and
vandalization to superimposed letters.
Unless otherwise stated, an image will refer to a grayscale image.

1.1 Grayscale Image Basics

A digital grayscale image, I, is an m × n matrix, where at each index, Ii,j consists of
an integer value from 0 to 255 (we will only consider rectangular images). The (i, j)th
index in I is equivalent to the pixel at the corresponding location. This value is referred
to as the graylevel at location (i, j), where 0 corresponds to pure black, 255 to pure white,
and all intermediate values to different shades of gray. We let D be the set of indicies
(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . ,m} where I is defined.
Throughout this report, however, we equivalently treat I as a function from a discrete domain
of indicies {1, 2, . . . , n} × {1, 2, . . . ,m} to the integers mod 256.

1

1.2 The Inpainting Problem

Suppose we have a subset Ω ⊂ D where we would like to modify the graylevel of I based on
the information of I from the surrounding region D\Ω. Ω will be referred to as the inpainting
region. The modified image, which we call I∗ or the solution, will, by definition, have equal
grayvalues as I in D\Ω. The process of finding the appropriate I∗, we call, the inpainting
problem (See Figure 1).

Figure 1: An example of Inpainting. Left: The rectangular region in the center
in white is Ω, the inpainting region. Right: A ‘good’ solution to the inpainting
problem; the grayvalues in Ω are reasonable with respect to the grayvalues
outside of Ω.

Generally in applications, the ratio |Ω|/|D| is approximately 10 ∼ 20% ([3]). This means
that we have ample information in D\Ω to base our guess for I∗ in Ω. Also, Ω need not be
rectangular nor connected, as we will see later.
There are already several algorithms available as commercial software that perform
inpainting. Some prompt the user for parameters and/or manual adjustment in completing
the inpainting process. The algorithm we have applied is robust in the sense that no user
input is required other than the image I and the inpainting region Ω. Note that the algorithm
does not find the appropriate Ω; this would involve techniques for other areas in image
processing, such as image segmentation.
In some sense, inpainting is an art form; There is never the correct solution, but certainly
some solutions are more appealing than others. The goal in inpainting is to derive the most
appealing solution in the region to be filled in. The mathematical equivalent to an appealing
solution will be motivated later.

1.3 The Solution Criterion

The most natural approach to solve the inpainting problem is to mimic how professional
image restorators inpaint manually. As discussed in [2], restorators extend edges from the
boundary of Ω, connect these extended edges, and then fill in intra-region accordingly. This
idea has been proven to produce satisfactory, if not remarkable, solutions ([1],[2],[3]). To

2

motivate this mathematically, we must introduce several more key notions.
First, isophotes are level lines of equal graylevels. Mathematically, the direction of the
isophotes can be interpreted as

∇⊥I,

where ∇⊥ = (−∂y, ∂x), the direction of the smallest change. Next, the smoothness can be
interpreted as,

∆I,

where ∆ is the usual Laplacian operator. Notice that, misleading as it may seem, |∆I| is
large for non-smooth regions, while ≈ 0 in smooth regions. Nevertheless, this is a good
way of quantifying the smoothness of an image at a particular location. Generally, ∆I will
extract edges (and noise) in an image.
In light of ∇⊥I and ∆I, in order to mimic the idea of image restorators, we conclude:

Propagate ∆I in the direction of ∇⊥I from the boundary of Ω. When all
information is propagated, ie. the level lines of ∆I is parallel to ∇⊥I, we have a
solution.

See Figure 2 below.

Figure 2: The inpainting problem as approached by Bertalmio, et. al.. The
smoothness information ∆I is propagated in the direction of the isophotes.
(The vertical curves represents isophote lines.)

Notice that, unlike the restorators, the graylevels in the intra-regions are automatically
determined by the smoothness in Ω and the graylevels on the boundary of Ω. Mathematically,
therefore, we have the solution criterion for the inpainting problem:

The solution I∗ satisfies
∇⊥I∗ · ∇∆I∗ = 0 (1)

and is equal to I on ∂Ω, the boundary of Ω.

Bertalmio, et. al. ([2]) iteratively propagates ∆I in the direction of ∇⊥I until a steady state
(1) is met. A simple verification of this steady state condition is shown in Figure 3. How
the algorithm introduced in this paper propagates ∆I is described in the following sections.

3

Figure 3: Verification of the solution criterion on a sample image. Top
Left: The Original Image I. Top right: The smoothness ∆I. Bottom Left:
the Isophote lines ∇⊥I. Bottom Right: The level curve of the smoothness
∆I. Note that the isophotes directions are parallel to the level curves of the
smoothness, ie. ∇⊥I · ∇∆I = 0.

1.4 Navier-Stokes and the PDE for Inpainting

Incompressible, Newtonian flow obey the Navier-Stokes equations,

vt + v · v = −∇p + ν∆v, ∇ · v = 0, (2)

where v is the velocity vector, p is the pressure and ν is the viscosity. For 2 dimensional
flows, introduce a stream function Ψ, where,

∇⊥Ψ = v,

eliminates p in and identically satisfies the divergence free condition in (2). Letting ω =
∇ × v, the vorticity, we obtain the vorticity-stream function formulation for the Navier-
Stokes equations:

ωt + v · ∇ω = ν∆ω. (3)

In the case of near absence of viscosity, ie. ν ≈ 0, we have the steady state solution of (3)
approaching,

v · ∇ω = ∇⊥Ψ · ∇∆Ψ ≈ 0 (4)

Notice the remarkable similarity between (4) and the solution criterion (1) for the inpainting
problem! Exploiting this fact and replacing Ψ with an image matrix I 1, we summarize the

1Ψ is a continuous function defined on a continuous domain, while I is like an integer function defined
on a discrete domain. Since we will discretize Ψ using finite difference techniques, the latter discrepancy is
resolved. For the former case, values are rounded to the nearest integer.

4

counterparts between 2D incompressible fluid flow and image inpainting in the table below
([1]).

Fluid dynamics Image processing

stream function Ψ Image intensity I
fluid velocity ~v = ∇⊥Ψ isophote direction ∇⊥I
vorticity ω = ∆Ψ smoothness w = ∆I
viscosity ν anisotropic diffusion ν

In image processing terms, we now have the counterpart to the vorticity-stream function
formulation (3):

wt + v · ∇w = ν∇ · (g(|∇w|)∇w), (5)

where ∆I = w, the vorticity, and ∇⊥I = v, the direction of the isophotes.
The g in (5) accounts for anisotropic diffusion, or edge-preserving diffusion 2. In general,

g(0) = 1, lim
s→∞

g(s) = 0, and monotonically decreasing

Figure 4: The Perona-Malik anisotropic diffusion function g, with K = 2.

Notice how the diffusion term is large for smooth areas while close to zero on edges, and
therefore tends to sharpen images ([5]). One example for g is the so-called Perona-Malik
anisotropic diffusion ([6], Figure 4), given by,

g(s) =
1

1 + (s/K)2
, (6)

where K is a predefined diffusion parameter.
The goal is to evolve (5) to a steady state.

2For simplicity in implementation, engineers sometimes use the somewhat crude approximation ∇ ·
(g(|∇w|)∇w) ≈ g(|∇w|)∆w. See, for example, [7].

5

2 Implementation

2.1 The Algorithm

The algorithm exploits the same technique used to solve 2D fluid flow in a rectangular
domain.
The two equations, (5) and ∆I = w must be solved simultaneously. One way to achieve this
is to use a standard time-marching technique where we have, at time level t = n∆t 3, wn

and In for which to be iterated until a steady state is reached.
Assume, for now, that the inpainting region Ω is rectangular. The algorithm solves the
coupled equations in Ω, using necessary boundary condition information extracted from ∂Ω.

2.2 The Finite Difference Scheme

In evolving (5), two finite difference approaches were implemented: Forward-time centered-
space (FTCS) and forward-time Upwind (FTUp).
Suppose we have an m∗ by n∗ image I. We treat I to be defined on a continuous domain
[0, n] × [0, m] and discretized into a m∗ by n∗ grid, with grid spacing ∆x = ∆y = 1. The
FTCS scheme looks as follows:

wn+1
i,j = wn

i,j + ∆t
[
−unD0

xwi,j − vnD0
ywi,j + ν{diffusion discretization}

]
where D0

x, D
0
y denotes the centered approximation of the first derivative; The discretization

for the diffusion will be formulated in Section 2.4.
In implementing the FTUp scheme, we note that for a linear advection equation wt = awx,
the direction of the upwind depends on the wave speed a. If we expand the dot product for
the advection term in (5), we have,

wt + uwx + vwy = ν∇ · (g(|∇w|)∇w).

When discretizing, the direction of upwind for the terms wx and wy, therefore, depends
on the sign of their coefficients Iy and Ix. Written in concise form, we have the upwind
discretization of the advection terms as:

uwx ≈ |un|
wn

i+sgn(un),j − wn
i,j

∆x

vwy ≈ |vn|
wn

i,j+sgn(vn) − wn
i,j

∆y

The full discretization becomes,

wn+1
i,j = wn

i,j + ∆t(−|un|
wn

i+sgn(un),j − wn
i,j

∆x
− |vn|

wn
i,j+sgn(vn) − wn

i,j

∆y

+ν{diffusion discretization})
3The reader should note the subtle abuse of notation for ∆ as a Laplacian operator and the “difference”

operators used for grid spacing, etc.

6

The reason for choosing an explicit scheme is clear; Since one must evolve in time and solve
the poisson equation at each time-step, implementation of an implicit scheme will cause
difficulty in implementation.

In solving the poisson equation ∆In = wn, we first note that the standard centered
discretization of the Laplacian becomes,

∆y2(Ii+1,j + Ii−1,j) + ∆x2(Ii,j+1 − Ii,j−1)− 2Ii,j(∆y2 + ∆x2) = ∆x2∆y2wn
i,j

Then, reshaping In and wn into vectors of length m∗n∗, ~In and ~wn, yields a linear system of
the form A~In = ~wn, where A is a sparse, m∗n∗ ×m∗n∗ matrix (for boundary conditions see
Section 2.3). Techniques for solving linear systems are well-studied and hense a wide variety
of methods are available. For example, [1] uses the Jacobi method, while our algorithm uses
the successive over-relaxation (SOR) method 4.

2.3 Boundary Conditions

For the finite differences schemes derived in Section 2.2, boundary conditions for both In

and wn are required. The implementation of these boundary conditions are slightly different
from fluid flows ([8]), since, I, the counterpart to the stream function Ψ is the only known
information on ∂Ω.
The boundary condition for solving the poisson equation ∆In = wn is clear as one can simply
use the dirichlet conditions with the values of I on ∂Ω.
In computing the dirichlet conditions for w = ∆I on ∂Ω, one requires to compute several
one-sided approximation of derivatives. As mentioned in Section 1.2, we use the fact that
I is well known outside Ω, not just on the boundary ∂Ω. Computing w on the boundary
requires several steps:

1. Compute u and v for three-pixel thickness on ∂Ω. We have u = −Iy and v = Ix; using
centered difference whenever possible and one-sided three-point formulae otherwise,
compute u and v from I outside Ω. In total, we require a three-pixel thickness of u
and v outside Ω; the reason for this will be clear.

2. Compute uy and vx for one-pixel thickness on ∂Ω. Using values of u and v computed in
step 1, computed using centered difference whenever possible and one-sided three-point
formulae otherwise the values for uy and vx for one-pixel thickness.

3. Compute w (for one-pixel thickness) on ∂Ω. From values computes in step 2, take the
difference w = −uy + vx. We now have the dirichlet boundary condition for w.

By the one-sided three-point formulae for the first derivative, we mean:

f ′j =
−fj+2 + 4fj+1 − 3fj

2∆x
+ O(∆x2)

f ′j =
3fj − 4fj−1 + fj−2

2∆x
+ O(∆x2)

These formulae for the derivative, along with the centered difference formulae maintains a
second-order accuracy on the boundary conditions. See Figure 5.

4For testing purposes on Matlab, the infamous ‘\’ was used.

7

Figure 5: An example of computing the boundary conditions on the bottom
boundary. Left: ‘+’ marks where u and v are to be computed (three-pixel
thickness) and ‘o’ marks where uy, vx and w (one-pixel thickness) are to be
computed. Right: In computing uy and vx at the point on the boundary, use
centered difference for vx and a one-sided three-point formula for uy.

2.4 The Anisotropic Diffusion ∇ · (g(|∇w|)∇w)

The nested nature of the diffusion term in (5) demands a more careful treatment than
ordinary diffusion of the form ν∆w. We first note that:

∇ · (g(|∇w|)∇w) = ∂x(g(|∇w|)wx) + ∂y(g(|∇w|)wy) (7)

The method used to discretize (7) works as follows:

1. Apply centered difference where possible and one-sided three-point formulae for
boundaries to compute wx and wy at each grid point.

2. Compute |∇w| =
√

w2
x + w2

y and evaluate the predefined function g(|∇w|) at each grid
point.

3. Apply centered difference where possible and one-sided three-point formulae for
boundaries to compute ∂x(g(|∇w|)wx) and ∂y(g(|∇w|)wy) at each grid point. Add
to get the desired value at each grid point.

The predefined function used was the Perona-Malik function (6).

2.5 Treatment of Irregular Domains

Very few real applications of inpainting have rectangular Ω; Most Ω are highly irregular in
shape, from scratches to fonts ([1],[2],[3]).
Suppose now that Ω is any arbitrary shape in D. Let Ω̄ ⊂ D be the smallest rectangular
domain such that Ω ⊂ Ω̄. With the formulation of the algorithm so far, one can inpaint
on Ω̄, a larger region (See Figure 6). However, this will not efficiently use the information
known in Ω\Ω̄; Since this algorithm only knows how to propagate the smoothness, ∆I, other
information such as textures and complicated patterns will likely be lost if Ω̄ is large.
One method to overcome this problem is to solve (5) and the poisson equation in the irregular
domain Ω. This method, however, faces difficulty in evolving the finite difference scheme

8

and implementing the boundary conditions.
The approach we took for this problem was as follows 5: solve (5) using FTCS or FTUp
and the poisson equation ∆In = wn in the larger region Ω̄, then assign values into I for
indicies in the region Ω\Ω̄ at each time step. In other words, we force the known values of
I at each iteration wherever possible. Therefore, essentially, only the values in Ω vary after
every iteration, just as desired. If a steady state solution is met, then by the continuity of
the Navier-Stokes equations, the values of I in Ω should obey the Solution Criterion.

Figure 6: An example of an Irregular domain. Ω in this case are the black
letters superimposed on the man’s face. Ω̄ is the region inside the rectangle in
white. The inpainting is performed in Ω̄. (image courtesy of John Stockie)

The advantages of this last method for irregular regions is clear. The implementation is
extremely simple: only few extra lines of Matlab codes are required to be modifed from
the rectangular domain algorithm. Also, as will be shown later, the results produced from
this simple approach is quite satisfactory.

2.6 Remarks on Accuracy, Stability and Continuity

The overall accuracy of this algorithm is O(∆t, ∆x) for FTUp and O(∆t, ∆x2) for FTCS.
The boundary condition implementation described in section 2.3, ensures that the second
order accuracy is met at the boundaries. Generally in the fluid dynamics community, first
order in space is considered too crude an approximating due to excessive diffusion. However,
as we will see later, the numerical solutions to the inpainting problem using FTCS and FTUp
appears nearly identical to the human eye. Note also that the restriction on ∆t for stability
is less tight for FTUp than for FTCS for linear advection-diffusion equations; this fact was
experimentally shown to carry over for our inpainting algorithm.
Stability in general is currently a difficult issue. Bertozzi, et. al. states in [1]:

5None of the papers on inpainting that were studied contained hints on how to inpaint on irregular
domains.

9

We expect that Navier-Stokes based inpainting may inherit some of the stability
and uniqueness issues known for incompressible fluids, although the effect of
anisotropic diffusion is not clear.

The non-linearity of the problem poses difficulty in analysing the stability condition
analytically. Also, how the implementation for the irregular domains (forcing values at
certain locations for every time step) affects the stability is difficult to predict. Needless
to say, stability is a very important regarding the efficiency of the algorithm. Determining
the maximum possible ∆t allows few time step iterations to carry the solution to a steady
state, hense speeding up the inpainting process. Numerical analysis regarding stability will
be done later in Section 3.2.
Finally, as mentioned briefly earlier, the continuity of the Navier-Stokes equations guarantees
several useful facts:

1. As developed in Section 1, the Solution Criterion is (nearly) satisfied for small ν.

2. The boundary condition of the poisson equation guarantees that I is continuous at ∂Ω.

3. Specifying the tangential velocity vector from ~v = ∇⊥I guarantees the the direction of
the isophotes are continuous at ∂Ω. (See Figure 7)

Figure 7: The direction of isophotes on the boundary. Left: Before inpainting.
Center: After inpainting with an algorithm that does not satisfy continuous
isophote direction on the boundary. Right: Inpainting with Navier-Stokes.
Note how the isophote directions are continuous with the Navier-Stokes
method.

10

3 Numerical Results

3.1 Examples

3.1.1 Rectangular Domain

A rectangular domain of size 20 × 20 was inpainted. Parameter used were: ∆t = 0.001,
ν = 1/∆t, K = 10−16. The inpainting process took a few seconds on a standard PC on
Matlab. See Figure 8.

Figure 8: Top Left: Original image I. Top Right: Inpainting region shown
as a white rectangle. Bottom Left: Inpainting result using the FTCS scheme.
Bottom Right: Result using the FTUp scheme. Note how the two schemes
produce nearly identical results.

3.1.2 Irregular Domain

For this artificial example, the inpainting was performed for a predefined Ω. It demonstrates
the effect of using multiple small inpainting regions compared to one large region. Parameter
used were: ∆t = 0.00001, ν = 1/∆t, K = 10−16. The inpainting process took a few seconds
on a standard PC on Matlab. See Figures 9, 10, 11.
The next example is more practical. Parameter used were: ∆t = 0.00001, ν = 2, K = 10−16.
The inpainting process took a few seconds on a standard PC on Matlab. See Figure 12.

11

Figure 9: Left: Original image I. Right: The original image with graffiti (of a
chicken). The goal is to recover the original image I.

Figure 10: Left: Using a large inpainting domain. Right: Solution with FTUp
using the large inpainting domain.

3.2 Attempts on Stability of Solutions

While testing with various sample images, we found that inpainting in a equally sized
(rectangular) Ω and the same viscosity ν and ∆t, produced stable solutions in some images
and unstable solutions (graylevel blows up to ±∞) in others. It demonstrated that certain
characteristics of I near ∂Ω has some sort of effect on the maximum stable choice for ∆t.
Recall that, for example, numerical solutions to the Navier-Stokes equations for the Driven-
Cavity flow problem ([8]) using the FTCS scheme have stiffer restrictions on ∆t as Re, the
Reynolds number, increases. One can expect a similar phenomenon for inpainting using the
Navier-Stokes equations.
The Reynolds number, for fluids, is defined to be,

Re =
V L

ν
,

where V is the characteristics velocity scale, L the length scale, and ν the viscosity. If the
inpainting process were done in a fixed size (rectangular) Ω and ν, we anticipated that |∇⊥I|
on ∂Ω, which corresponds to |~v| in fluids, has some effect on the maximum allowable ∆t.
Suppose we let |∇⊥I|ave to denote the average value of |∇⊥I| along ∂Ω and |∇⊥I|max to
denote the maximum value of |∇⊥I| along ∂Ω. Upon testing with the ‘Lena’ image at
different pixel locations with Ω 30 × 30 pixels and ν = 2, the result shown in Figure 13
was found between the ratio |∇⊥I|ave/|∇⊥I|max and the maximum allowable ∆t to attain a
stable solution.

12

Figure 11: Left: Using two smaller inpainting domain. Right: Solution with
FTUp using the two smaller inpainting domains. Note the better result with
the smaller domains.

Figure 12: Left: The image with superimposed letters. Right: Inpainting
solution with FTUp.

Knowledge about the choice of the maximum allowable ∆t is at best, far from understood.
Although Figure 13 suggests that images with larger |∇⊥I|ave/|∇⊥I|max values have more
related restriction on ∆t, more analysis is necessary for its practical use, or even regarding
its validity. For example, Bertozzi, et. al. in [1], on choosing the parameters, simply states:

Parameters for the algorithm have been chosen in such a way as to work for a
wide range of examples: dt = 0.01, dx = dy = 1, . . .

4 Concluding Remarks

The image inpainting problem, and a method of solving it using techniques from CFD
was introduced. This is a textbook example of interdisciplinary mathematics, exploiting
techniques from a mature field in a relatively new field. Preliminary results show that
the algorithm is satisfactory in practice, both in terms of the quality of the solution and
computational efficiency. However, as mentioned earlier, stability of the algorithm is still an
issue yet to be clarified.
Further minor extensions to this algorithm are possible. For example, the idea of inpainting

13

Figure 13: The horizontal and vertical axes represents
|∇⊥I|ave/|∇⊥I|max and the maximum allowable ∆t, respectively.
The crosses show the results from numerical tests. The line is
the linear least squares fit of the data. The least squares fit was:
y = .1870677853× 10−1 + .239375186065265200x.

on several smaller domains rather than one large domain for irregular regions may be further
perfected. Actually implementing the algorithm on a irregular domain and not on the
enclosing rectangle, Ω̄, may also be possible. Color images and video inpainting have already
been successfully treated in [1].

5 Acknowledgments

The authors would like to thank Dr. John Stockie for his service in teaching us basic CFD
techniques. Comments and suggestions on implementing the irregular domains and the
Upwind methods from Dr. Adam Oberman were also appreciated.

14

References

[1] M. Bertalmio, A. L. Bertozzi, G. Sapiro, ”Navier-Stokes, Fluid Dynamics, and Image
and Video Inpainting”, Proceedings of the International Conference on Computer Vision
and Pattern Recognition , IEEE, Dec. 2001, Kauai, HI, volume I, pp. I-355-I362

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, ”Image Inpainting”, SIGGRAPH
2000, pages 417-424

[3] M. Oliveira, B. Bowen, R. McKenna, Yu-Sung Chang, ”Fast Digital Image Inpainting”,
Proceedings of the International Conference on Visualization, Imaging and Image
Processing (VIIP 2001), Marbella, Spain, September 3-5, 2001

[4] John F. Wendt, Computational Fluid Dynamics: an introduction, second edition, 1990,
Springer-Verlag

[5] M. Black, G. Sapiro, D. Marimont, ”Robust Anisotropic Diffusion”, IEEE Transaction
on Image Processing, Vol. 7, No. 3, March 1998

[6] P. Perona, J. Malik, ”Scale-Space and Edge Detection Using Anisotropic Diffusion”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, July
1990

[7] T. Sziranyi, I. Kopilovic, B.P. Toth, ”Anisotropic Diffusion as a Preprocessing Step for
Efficient Image Compression”, Proceedings of Fourteenth International Conference on
Pattern Recognition, Volume: 2, pages 1565-1567, 16-20 Aug 1998

[8] C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, Oct
1996, Oxford Press

15

