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ABSTRACT 
We present a very simple inpainting algorithm for 
reconstruction of small missing and damaged portions of 
images that is two to three orders of magnitude faster than 
current methods while producing comparable results.  
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1. INTRODUCTION 

Reconstruction of missing or damaged portions of images 
is an ancient practice used extensively in artwork 
restoration. Also known as inpainting or retouching, this 
activity consists of filling in the missing areas or 
modifying the damaged ones in a non-detectable way by 
an observer not familiar with the original images [2]. 
Applications of image inpainting range from restoration 
of photographs, films and paintings, to removal of 
occlusions, such as text, subtitles, stamps and publicity 
from images. In addition, inpainting can also be used to 
produce special effects.  

Traditionally, skilled artists have performed image 
inpainting manually. But given its range of applications, it 
would be desirable to have image inpainting as a standard 
feature of popular image tools such as PhotoShop. 
Recently, Bertalmio et al [2] have introduced a technique 
for digital inpainting of still images that produces very 

impressive results. Their algorithm, however, usually 
requires several minutes on current personal computers 
for the inpainting of relatively small areas. Such a time is 
unacceptable for interactive sessions and motivated us to 
design a simpler and faster algorithm capable of 
producing similar results in just a few seconds.  

The results produced by our algorithm are comparable to 
those found in the literature [2, 4, 5], but two to three 
orders of magnitude faster. We illustrate the effectiveness 
of our approach with examples of restoration of 
photographs, vandalized images, and text removal. Figure 
1 (left) shows a famous cracked photograph of Abraham 
Lincoln taken in 1865. The image to its right shows the 
result obtained with our algorithm in 0.61 seconds on a 
450 MHz Pentium III PC. 
 
2. PREVIOUS AND RELATED WORK 
 
Bertalmio et al [2] pioneered a digital image-inpainting 
algorithm based on partial differential equations (PDEs). 
A user-provided mask specifies the portions of the input 
image to be retouched and the algorithm treats the input 
image as three separate channels (R, G and B). For each 
channel, it fills in the areas to be inpainted by propagating 
information from the outside of the masked region along 
level lines (isophotes). Isophote directions are obtained by 
computing at each pixel along the inpainting contour a 

Fig. 1. Left: An 1865 Photograph of Abraham Lincoln taken by Alexander Gardner (courtesy of Wing Yung and Ajeet
Shankar from Harvard University). Right: Image restored with our algorithm. The inpainting time took about half of a second. 
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discretized gradient vector (it gives the direction of largest 
spatial change) and by rotating the resulting vector by 90 
degrees. This intends to propagate information while 
preserving edges. A 2-D Laplacian [8] is used to locally 
estimate the variation in color smoothness and such 
variation is propagated along the isophote direction [2]. 
After every few step of the inpainting process, the 
algorithm runs a few diffusion iterations to smooth the 
inpainted region. Anisotropic diffusion [13] is used in 
order to preserve boundaries across the inpainted region.  

Inspired by the work of Bertalmio et al., Chan and Shen 
proposed two image-inpainting algorithms [4, 5]. The 
Total Variational (TV) inpainting model [4] uses an 
Euler-Lagrange equation and inside the inpainting domain 
the model simply employs anisotropic diffusion [13] 
based on the contrast of the isophotes. This model was 
designed for inpainting small regions and while it does a 
good job in removing noise, it does not connect broken 
edges (single lines embedded in a uniform background) 
[4]. The Curvature-Driven Diffusion (CDD) model [5] 
extended the TV algorithm to also take into account 
geometric information of isophotes when defining the 
“strength” of the diffusion process, thus allowing the 
inpainting to proceed over larger areas. CDD can connect 
some broken edges, but the resulting interpolated 
segments usually look blurry.    

While nonlinear PDE-based image restoration methods 
have the potential to systematically preserve edges, the 
inpainting problem is very ill posed in general and fast 
numerical implementations are difficult to achieve [5]. It 
is equally hard to find appropriate mathematical models 
for inpainting [5]. Despite their high quality, a careful 
examination of the results presented in [2] (not 
reproduced here) reveals that sharp edges are not always 
preserved. For instance, the reconstructed region where 
the mask crosses the VW Beetle near the windshield 
appears blurred with broken edges (Figure 6 (top) in [2]).  

Hirani and Totsuke [11] combine global frequency and 
local spatial information for noise removal and use it for 
post-production of special effects shots. Such a technique 
can produce very nice results, but requires the existence 
of sample sub-images whose contents are approximately 
translated versions of the regions to be repaired.  

Digital techniques have also been used for automatic 
restoration of scratched films [10], and commercial 
products are available for scratch removal of digitized 
films [1], photo retouching [7] and wire-and-rig removal 
[6, 14].   
 
3. THE INPAINTING ALGORITHM 
 
Images may contain textures with arbitrary spatial 
discontinuities, but the sampling theorem [8] constraints 
the spatial frequency content that can be automatically 
restored. Thus, for the case of missing or damaged areas, 
one can only hope to produce a plausible rather than an 
exact reconstruction. Therefore, in order for an inpainting 

model to be reasonably successful for a large class of 
images the regions to be inpainted must be locally small. 
As the regions become smaller, simpler models can be 
used to locally approximate the results produced by more 
sophisticated ones. Another important observation used in 
the design of our algorithm is that the human visual 
system can tolerate some amount of blurring in areas not 
associated to high contrast edges [9]. 

Thus, let Ω be a small area to be inpainted and let ∂Ω be 
its boundary. Since Ω is small, the inpainting procedure 
can be approximated by an isotropic diffusion process that 
propagates information from ∂Ω into Ω. A slightly 
improved algorithm reconnects edges reaching ∂Ω (for 
instance, using an approach similar to the one described in 
[12]), removes the new edge pixels from Ω (thus splitting 
Ω into a number of smaller sub-regions), and then 
performs the diffusion process as before.  

The simplest version of the algorithm consists of 
initializing Ω by clearing its color information and 
repeatedly convolving the region to be inpainted with a 
diffusion kernel. ∂Ω is a one-pixel thick boundary and the 
number of iterations is independently controlled for each 
inpainting domain by checking if none of the pixels 
belonging to the domain had their values changed by 
more than a certain threshold during the previous 
iteration. Alternatively, the user can specify the number of 
iterations. As the diffusion process is iterated, the 
inpainting progresses from ∂Ω into Ω.  

Convolving an image with a Gaussian kernel (i.e., 
computing weighted averages of pixels’ neighborhoods) 
is equivalent to isotropic diffusion (linear heat equation). 
Our algorithm uses a weighted average kernel that only 
considers contributions from the neighbor pixels (i.e., it 
has a zero weight at the center of the kernel). Figure 2 
shows the pseudocode of the algorithm and two diffusion 
kernels. All reconstructed images shown in this paper 
were obtained with this algorithm or with a minor 
variation of it explained in section 3.1. 

3.1. Preserving Edges 
The simplest version of the algorithm can introduce 
artifacts (noticeable blurring) when Ω crosses the 
boundaries of high contrast edges (Figure 3 (front left)). 
In practice, intersections between Ω and high contrast 
edges are the only places where anisotropic diffusion is 
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initialize Ω;  
for (iter =0; iter < num_iteration; iter++)
     convolve masked regions with kernel; 

Fig 2. (top) Pseudocode for the fast inpainting algorithm. (bottom) 
Two diffusion kernels used with the algorithm. a = 0.073235, 
b = 0.176765, c = 0.125. 



required and such regions usually account for a small 
percentage of the total area.  

Creating the mask used to specify the regions to be 
inpainted is the most time-consuming step of the 
inpainting process, requiring user intervention. Since our 
algorithm can inpaint an image in just a few seconds, it 
can be used for interactive construction of tight masks. 
We exploit this interactivity to implement edge 
reconnection by defining diffusion barriers, which are 
boundaries for the diffusion process inside Ω. This 
accomplishes a result similar to boundary reconstruction 
and anisotropic diffusion, but without the associated 
overheads. In practice, a diffusion barrier is a two-pixel 
wide line segment. As the diffusion process reaches a 
barrier, the reached pixel has its color set, but the process 
stops. Figure 3 illustrates the idea, with the clear crossing 
lines in Figure 3 (back left) representing the inpainting 
domain. The simple diffusion-based inpainting algorithm 
produces blurred spots at the intersections between Ω and 
high contrast edges (see the small circles in Figure 3 
(front left)). By appropriately adding diffusion barriers 
(line segments across the mask in Figure 3 (back right)), 
the user stops the diffusion process from mixing 
information from both sides of the mask. The resulting 
straight lines are shown in Figure 3 (front right).  

4. RESULTS 
We have implemented the algorithm described in Figure 2 
in C++ and tried the two different diffusion kernels. In 
both cases the results were similar. All images shown in 
the paper were generated using a 450 MHz Pentium III 
PC with 128 MB of memory running Windows98 and 
using the leftmost kernel shown in Figure 2. Results 
shown in Figures 5, 8, 9 and 10 were produced with the 
simplest version of the algorithm without diffusion 
barriers. For Figure 1, a mask and two diffusion barriers 
were used (Figure 4). For the three girls example, four 
diffusion barriers associated with regions of the mask 
crossing high contrast edges were used (Figure 6 (right)). 
In all cases, 100 diffusion iterations were used. 

All inpainting and wire-and-rig removal systems require a 
step of manual masking. Given a painting system with a 
set of features, the time required to create a mask only 
depends on the available features and is independent of 
the inpainting algorithm used. For interactive 
applications, it is desirable to have the masking 
capabilities and the inpainting algorithm in the same 
system to avoid switching between different 
environments. In our current prototype, we have 
implemented a simple painting system and the ability to 
import and export JPEG files.  

The masks used for restoring Lincoln’s portrait and the 
picture of the three girls (Figures 4 and 6 (right), 
respectively), were created with our painting system. The 
mask used in the New Orleans example (Figure 5) was 
instantly obtained by selecting “red” using the select color 
range feature of Photoshop. The resulting image was 
saved and imported into our system. The masks used with 
Figures 8, 9 and 10 were JPEG images containing the 
corresponding text and scribble shown in these images.   

The cost of inpainting is linear on the size of the inpainted 
region and algorithms are cache intensive. For the 
example of Lincoln’s portrait, the inpainting time of our 
algorithm was 0.61 seconds. Figures 5 and 6 (left) were 
used in [2] and obtained from Bertalmio’s web site [3]. 
For the example shown in Figure 6, Bertalmio et al. 
reported an inpainting time (for one color channel) of 
approximately 7 minutes, or 2 minutes when a two-level 
multiresolution approach is used [2]. These times were 
measured on a 300 MHz Pentium II PC (128 MB of 
memory running Linux). The image shown in Figure 8 
(left) was produced with our algorithm in 1.21 seconds.    

Figures 8, 9 and 10 illustrate different kinds of features 
found in actual photographs. Figure 8 shows a 640x480-
pixel photograph exhibiting uncorrelated high frequencies 
represented by the leaves of the trees. It was 
superimposed with a textual mask (18 pt font size) 
covering 18.77% of its original area. The restored image, 
obtained in 6.37 seconds, essentially recovers all details 
of the original picture. Notice, for instance, the children 
playing in the back. Figure 9 shows a 640x480-pixel 
image containing very few high contrast edges, but with 
14.54% of its area scratched. The image shown on its 
right was recovered in 5.87 seconds. Finally, Figure 10 
shows an underwater scene (512x384 pixels) containing a 
large number of high contrast edges and superimposed 
with a mask covering 16.19% of its area.  Figure 10 
(right) was reconstructed in 4.06 seconds. Notice that 
such a reconstruction is mostly fine, except for some 
disconnected branches on the top right. Due to the 
relatively small scale of some of the masked branches, 
other inpainting techniques are also likely to fail to 
connect these edges. Table 1 summarizes the inpainting 
times obtained on two different systems. 

The quality of an inpainting is a subjective issue. Error 
measurements should take into account a perceptual 
metric, such as the S-CIELAB metric [16]. Unfortunately, 

Fig. 3.  The crossing lines define the inpainting domain (back
left). Result of the isotropic diffusion introduces some blurring
along high contrast edges (top left). User-added diffusion barriers
(back right). Result produced with diffusion barriers (front right). 



we were unable to use S-
CIELAB this time, and, 
instead, we used the mean-
square error (MSE) of the 
reconstructed region 
computed for the R, G and 
B channels as a measure of 
the quality of the 
reconstruction. MSE is 
frequently used in image 
processing to assess error. 
For the case of Figures 5 
and 6, the MSE was 
computed against images 
restored by Bertalmio et 
al. and available at their 

web site [3]. The errors associated with the reconstruction 
of the images shown in Figures 8, 9 and 10 were 
computed using the original photographs as reference. 
The results are summarized in Table 2, sorted by 
increasing error. Notice that for the case of images not 
containing sharp color or intensity discontinuity (e.g, 
three girls and baby Lu) the error is small. In particular, 
for the case of the three girls, our result is virtually 
indistinguishable from the Bertalmio’s.  
As expected, images containing large amounts of high 
frequencies (yard and underwater), present larger 
reconstruction errors. Despite the error values, the 
reconstructed images still look good (Figures 8 (right) and 
10 (right)).  For the yard, most high frequency regions 
correspond to tree leaves, which due to its stochastic 
nature help to mask the error. In the case of the 
underwater image, the error is again distributed across all 
high frequency regions. However, it only seems to be 
noticeable in areas containing predictable high contrast 
edges, such as the branches on the top right. 

5. CONCLUSION AND FUTURE WORK 
We have presented a simple and fast inpainting algorithm 
based on an isotropic diffusion model extended with the 
notion of user-provided diffusion barriers. The results 
produced by this simple model are, in many cases, 
comparable to previously known non-linear inpainting 
models, but two to three orders of magnitude faster, thus 
making inpainting practical for interactive applications.  

Ideally, the mask Ω should include exactly the region to 
be retouched. If smaller, ∂Ω will contain spurious 
information, which will be carried into the restored area. 
If bigger, some possibly important information might be 
discarded. Being able to create and refine Ω interactively 
can greatly improve the quality of the reconstruction.  

The presented algorithm is intended for filling in locally 
small areas. For larger inpainting domains, a scale-space 
approach [15] can be used to preserve the algorithm’s 
speed at the expense of reconstruction quality.  

Although diffusion barriers could be used to reconnect 
edges in Figures 5 and 11, an automatic procedure similar 
to the one described by Nitzberg et al [12] is preferable. 
Finally, we intend to evaluate the quality of the restored 
images using the S-CIELAB metric for perceptual color 
fidelity [16]. 

  Table 1 Inpainting time measured using two systems 

Image Time PIII 
450 MHz 

Time Athlon      
1 GHz 

Lincoln 0.61 sec. 0.30 sec. 
New Orleans 2.53 sec. 0.71 sec. 
Three girls 1.21 sec. 0.49 sec. 

Yard 6.37 sec. 1.90 sec. 
Baby Lu 5.87 sec. 1.70 sec. 

Underwater 4.06 sec. 1.11 sec. 

Table 2 MSE for the RGB channels of the restored images 
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Image MSE r MSE g MSE b # Masked 
pixels 

Three Girls 33.88 33.88 33.88 9,264 
Baby Lu 61.32 66.9 72.40 42,061 
New Orleans 347.53 269.57 290.59 20,795 
Yard 729.76 725.73 732.90 57,688 
Underwater 802.10 589.26 510.06 31,831 

Fig. 4: Lincoln portrait
showing mask and two
diffusion barriers (at the
boundaries of Lincoln’s hair).



Fig. 6. Left: Old photograph (courtesy of Marcelo Bertalmio [4]). Right: Mask and diffusion barriers superimposed. Diffusion barriers:
one between the left white border and the gray background, one between the background and the left side of each of the two bigger girls’
faces, and one between the “left” arm of the girl in the center and the background. 

Fig. 7. Three girls. Left: Restored image obtained with our algorithm. Right: Result produced with Bertalmio’s algorithm (courtesy
of Marcelo Bertalmio [4]).  Different masks were used for the two images. 

Fig. 5: New Orleans: (left) Picture with superimposed text (courtesy of Marcelo Bertalmio [4]). (right) Restored image obtained with
our algorithm. 



 
 

 

 

Fig. 9.  Baby Lu: Image containing few high contrast edges. Mask covers 14.54% of its area. Right: restored image. 

Fig. 10.  Underwater. Left: Image containing many high contrast edges, with text covering 16.19% of its area. Right: restored image.
Although the error is distributed across all high frequency regions, it is noticeable at the broken and blurred white edges on the top right. 

Fig. 8.  Yard: Image containing uncorrelated high frequency with text covering 18.77% of its area. Right: restored image obtained with
our algorithm. Notice the children playing in the back, and the details of the doors, windows and columns.  


