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Demosaicing by Successive Approximation
Xin Li, Member, IEEE

Abstract—In this paper, we present a fast and high-performance
algorithm for color filter array (CFA) demosaicing. CFA demo-
saicing is formulated as a problem of reconstructing correlated
signals from their downsampled versions with an opposite phase.
The major contributions of this work include 1) a new iterative de-
mosaicing algorithm in the color difference domain and 2) a spa-
tially adaptive stopping criterion for suppressing color misregis-
tration and zipper artifacts in the demosaiced images. We have
compared the proposed demosaicing algorithm with two current
state-of-the-art techniques reported in the literature. Ours outper-
forms both of them on demosaicing performance and computa-
tional cost.

Index Terms—Bayer pattern, color difference rule, color filter
array (CFA), color misregistration artifacts, color ratio rule, iter-
ative demosaicing, successive approximation.

I. INTRODUCTION

DEMOSAICING, also called color filter array (CFA)
interpolation, refers to the problem of reconstructing a

color image from the charge-coupled device (CCD) samples.
The most commonly used CCD samples are Bayer pattern,
as shown in Fig. 1. In Bayer pattern, the sampling density of
green pixels is twice as much as that of red or blue pixels. The
objective of demosaicing is to interpolate the missing red, green
and blue pixels from the available ones so that the reconstructed
image can be as close to the original full-resolution color
image as possible. Meanwhile, the computational complexity
of demosaicing needs to be kept low for the reason of being
cost effective in practical applications.

Like other color image processing problems, modeling the
correlation among three color channels (planes) plays the crit-
ical role in demosaicing. Roughly speaking, all color channels
have very similar characteristics such as texture and edge loca-
tion. Ignoring such interplane dependency (e.g., straightforward
intraplane linear interpolation [5]) often renders the demosaiced
image suffering from annoying artifacts caused by color mis-
registration. Various techniques have been proposed to obtain a
more faithful and higher quality reproduction of color images by
exploiting the interplane correlation. The grand challenge is to
find the best tradeoff between image quality and computational
cost.

We classify previous demosaicing techniques into two cate-
gories: noniterative [6]–[15] and iterative [16], [17]. Nonitera-
tive demosaicing techniques mainly rely on the idea of edge-di-
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Fig. 1. Bayer pattern (U.S. patent 3 971 065).

Fig. 2. Problem of reconstructing correlated signals from their decimated
versions.

rected interpolation to improve the reconstruction performance.
The exploitation of intraplane correlation can be done by esti-
mating either local gradients [3], [4] or local covariance infor-
mation [14]. The exploitation of interplane correlation can be
performed based on either the color ratio rule [16] or the color
difference rule [7]. Iterative demosaicing techniques have also
been proposed recently [16], [17]. In [16], green and red/blue
channels are iteratively updated by enforcing the color ratio rule.
In [17], a projection-onto-convex-set (POCS)-based technique
is proposed to refine the red and blue planes by alternatively
enforcing the two convex-set constraints. It has been observed
that iterative demosaicing techniques are capable of achieving
higher quality in the reconstructed images than noniterative ones
at the price of increased computational cost.

In this paper, we formulate CFA demosaicing as a problem of
reconstructing correlated signals (say and ) from their down-
sampled samples with opposite phases, i.e., , (subscripts 0,
1 denote the phase attribute), as shown in Fig. 2. Such a problem
widely exists in the field of image and video processing. For ex-
ample, in the problem of deinterlacing [20], and are adjacent
video frames and , correspond to even field and odd field,
respectively; the correlation between and is characterized
by the motion model. In the problem of CFA demosaicing, ,
are green plane and red/blue planes and and are samples
at two quincunx lattices respectively; the correlation between
and is characterized by the interplane dependency.

A common observation with such types of problems is
the ”chicken-and-egg” flavor, i.e., in order to recover
(the missing phase in signal ), we attempt to exploit the
correlation between and , which requires the knowledge
of (the missing phase in signal ) and vice versa. Such
observation motivates us to come up with a novel iterative
formulation—starting from a rough guess, we can alternatively
refine our estimate of , (such an idea is elaborated for
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the demosaicing problem in Section III-B). The fundamental
assumption behind is that the correlation model with and
is sufficiently accurate such that an improved estimate of the
missing phase in one signal must lead to an improved estimate
of the missing phase in the other.

There are two popular interplane correlation models in the
literature: the color ratio rule [16] and the color difference rule
[7]. We advocate the use of the color difference rule because
it has lower computational cost and better fits the linear inter-
polation models widely used in the literature of CFA demo-
saicing. Another significant contribution of this paper is to study
the cause of notorious color misregistration and zipper artifacts
with demosaiced images and propose an efficient strategy of
suppressing them. It is shown that color misregistration arti-
facts are closely related to frequency aliasing in CFA and zipper
artifacts are caused by over-enforcing the color difference rule
in iterative demosaicing. A spatially adaptive stopping criterion
is proposed to effectively suppress both types of artifacts. We
compare the proposed demosaicing technique and two state-of-
the-art algorithms [17], [8] for a collection of 12 photographic
color images. Both objective and subjective evaluation of image
quality support the effectiveness of our scheme. The computa-
tional cost of our new iterative demosaicing technique also ap-
pears to be lower than that of existing ones.

The rest of this paper is organized as follows. Section II
studies two approaches of modeling the interplane correlation in
color images: the color ratio rule and the color difference rule.
Section III presents the new iterative demosaicing algorithm
and studies its initial condition as well as its convergence prop-
erty. Section IV investigates the cause of color misregistration
and zipper artifacts and proposes a spatially adaptive stopping
criterion to suppress both types of artifacts. Experiment results
are reported in Section V and concluding remarks are made in
Section VI.

II. MODELING COLOR INTERPLANE CORRELATION

In this section, we study two approaches of exploiting inter-
plane correlation among different color channels: the color ratio
rule [16] and the color difference rule [10], [7]. Both rules rep-
resent heuristic approximation of nonlinear dependency among
color planes. It has been found [2], [3] that the color difference
rule is more suitable for CFA data after gamma correction than
the color ratio rule. Our contribution is to demonstrate that when
interplane correlation is combined with intraplane correlation
(often characterized by a linear interpolative model), the color
difference rule works more effectively (faster and more stable),
especially for the class of iterative CFA demosaicing schemes.

A. Color Ratio Rule

The color ratio rule employed in [16] is based on a simpli-
fied approach of the modeling color image formation by viewing
Lambertian nonflat surface patches. According to the model, the
pixel intensity of each channel may be viewed as the projec-
tion of the surface normal onto the light source , multi-
plied by the albedo . The albedo is a parameter of the sur-
face material and differs for varying spectral channels. If we

use to denote the albedo for each channel, the
three color planes can be represented by [16]

(1)

where is the pixel intensity of channel at the location of
. It is often assumed that within a given object of an image, the

albedo is constant and, therefore, the following color ratio rule
is valid within the interior of the given object [16] (superscripts

, denote the color plane index):

constant (2)

Although the above rule is based on an oversimplified assump-
tion of the color imaging model, it has shown to be fairly ef-
fective on exploiting the interplane correlation in demosaicing
applications [16].

B. Color Difference Rule

Another simplified way of modeling interplane correlation is
to assume that the color difference signal is approximately flat
within the boundary of a given object [3], [7]. That is

constant (3)

Apparently, such a color difference rule enjoys computational
efficiency over the color ratio rule due to the lack of nonlinear
division operations.

The color ratio rule and the color difference rule can be uni-
fied at least theoretically by a nonlinear warping (gamma cor-
rection) of image intensity values, i.e., the color difference rule
defined with respect to is equivalent to the color ratio
rule defined with respect to . However, which rule is more
appropriate for the demosaicing application depends on the way
we exploit both intra and interplane correlation in practice. For
example, it is often for the reason of exploiting intraplane corre-
lation and computational efficiency that the missing color ratio
or difference is interpolated by a linear combination of its neigh-
boring values. Therefore, if we think of , as two
stochastic processes, the question of choosing ratio or difference
boils down to which process better fits the assumed linear inter-
polation model. It is from such model fitting (and also compu-
tational cost) perspective that we argue that the color difference
rule has certain advantages over the color ratio rule.

C. Justifications

To justify the above claim, let us consider a simplified model
for (i.e.,
satisfies the bilinear interpolative model). With some algebraic
manipulation, we can easily verify that such model still holds in
the domain of the color difference

(4)

However, due to the curse of nonlinearity, the linear interpola-
tive model usually would not be valid in the domain of the color
ratio, i.e.

(5)
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TABLE I
INTERPOLATIVE GAIN (IN DECIBELS) COMPARISON BETWEEN COLOR RATIO AND COLOR DIFFERENCE FOR THE COLLECTION OF 12 KODAK TEST IMAGES

Fig. 3. Collection of 12 test images used in the experiments (images are
numbered from 1 to 12 in the order of left-to-right and top-to-bottom).

In fact, it is not difficult to find a counterexample in which the
error of linear interpolative model can be made arbitrarily large,
which makes the set defined by the color ratio rule nonconvex.
We believe that such lack of convexity at least partially con-
tribute to the lack of convergence of the color ratio rule-based
iterative demosaicing such as [16].

We have also empirically compared the color ratio and the
color difference rules. To qualitatively measure the appropriate-
ness of linear interpolation models for a stochastic process ,
the following “interpolative gain” (an analogy to the conven-
tional “predictive gain” [21]) is calculated from the image data

(6)

where is either or and is the residue signal
filtered by a Laplacian operator

(7)

We have computed the interpolative gains of ,
for the set of Kodak photographic color image database (40 im-
ages in total). It has been found that the values of are
uniformly larger than for each pair of and every
image. Due to the space limitation, we only report our findings
(refer to Table I) with a subset of 12 images which have also
been used in previous work on demosaicing [17]. These 12 im-
ages (as shown in Fig. 3) are selected because they cover a wide
range of texture and color patterns in the real world.

III. ITERATIVE DEMOSAICING ALGORITHM

In this section, we present a fast and high-performance itera-
tive demosaicing algorithm. The low computational complexity
comes from color-difference interpolation, which does not in-
volve nonlinear [16] or filtering [17] operations. The high per-

Fig. 4. Updating green channel. (Left) Interpolate D at the location of red
sublattice. (Right) InterpolateD at the location of blue sublattice.

Fig. 5. Updating red channel. (Left) Interpolate D at the location of green
sublattice. (Right) InterpolateD at the location of blue sublattice.

formance comes from intelligent exploitation of color correla-
tion in a successive approximation framework.

A. Color-Difference Interpolation

From now on, we use ( , ,
, are height and width of the image) to denote the spatial

coordinate and superscript to denote the iteration index. Our
starting point is a coarse approximation of color planes ( , ,
and ) obtained by intraplane interpolation techniques (e.g.,
bilinear [5], edge-sensitive interpolation [4], or edge directed
[14]). Such coarse approximation ignores the interplane corre-
lation and therefore violates the color difference rule. To enforce
the color difference rule across different color channels, it has
been suggested [3], [7] that linear interpolation be applied with
the color difference instead of the original color planes. For the
reason of completeness, we summarize the basic ideas behind
[7] as follows.

Since green plane is the dominant channel (affects the lumi-
nance mostly), it is used as the reference and the following two
color difference signals (chrominance)

(8)

work as the bridge to pass on successively refined estimate of
missing data between green and red/blue channels.

The green pixel at the location of red sublattice ( odd,
even) is updated by (see Fig. 4)

(9)

and

(10)
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The processing of blue sublattice ( even and odd) is
similar.

The red pixels are updated in two steps (see Fig. 5).

1) Interpolate the red pixels at
even, i.e.

(11)

(12)
and

(13)

(14)

2) Interpolate the red pixels at even,
odd, i.e.

(15)

and

(16)

The treatment of blue pixels is similar to that of red pixels.
The above updating strategies are chosen for their low com-

putational cost. As we will see next, by extending the color
difference interpolation into an iterative framework, we can
achieve significant improvement on demosaicing performance
at the price of modestly increased complexity.

B. Successive Approximation Strategy

Asmentionedin the introduction,CFAdemosaicingrepresents
a class of problems with the “chicken-and-egg” flavor, i.e., the re-
finement of green pixels at odd and red/blue pixels at the

evenaremutuallydependentandjointlybeneficial toeach
other. It is natural to introduce an iterative strategy to handle such
type of problem, as shown in Fig. 6. The philosophy behind iter-
ative demosaicing is simple: since an improved estimate of green
pixels could lead to an improved estimate of red/blue pixels and
viceversa,whydon’twefeedthe improvedestimateofR,G, andB
back to the loop and hope for further improvement? By forming a
closed loop, it becomes possible to successively approximate the
signal with the missing phase. Such observation is the key to the
successofiterativedemosaicingtechniquesproposedinthispaper.
Undertheiterativedemosaicingframework,therearethreeimpor-
tant questions to answer: 1) Where to start? 2) Does it converge?
3) Where to stop?

First, the performance of our iterative demosaicing algorithm
indeed depends on the starting point (the intraplane interpola-
tion method for green pixels). This is not surprising because
the color difference rule only emphasizes the correlation be-
tween color planes and ignores the geometric constraint of edges
[14] (intraplane correlation). The only place to incorporate our
a priori knowledge about edges is the initialization stage. As we

Fig. 6. Diagram of the proposed iterative demosaicing algorithm.

will see in the experiment results, a sophisticated intraplane in-
terpolation strategy for green pixels often renders better perfor-
mance than ad-hoc bilinear strategy. In order to keep the overall
computational complexity low, we suggest the use of edge-sen-
sitive interpolation [4], which has also been adopted by [17].

Second, the convergence property is critical to our under-
standing of iterative demosaicing algorithms. For example, in
the color ratio rule-based iterative demosaicing [16], the algo-
rithm is artificially terminated after three iterations due to lack of
convergence. In fact, we can use the theory of projection-onto-
convex-set (POCS) to show that the proposed iterative algorithm
in Fig. 6 does converge (see Appendix). The proof is conceptu-
ally similar to that provided in [17] except that the detail con-
straint set defined in [17] is nonlinear while the constraint set
based on the color difference rule in our scheme is linear. Ex-
perimental results in Section V also support the convergence of
the proposed iterative algorithm.

Unfortunately, despite the convergence property of our itera-
tive demosaicing algorithm, the limiting solution is not optimal
because the color difference rule only represents an approxima-
tion of the fundamental law of color images. It has been widely
observed that neither the color difference rule nor the color ratio
rule is accurate enough to characterize the interplane correlation
across the boundary of different objects [16], [7]. As we will see
next, the limiting solution often suffers from annoying zipper ar-
tifacts and is not the right target to pursue. Instead, we propose
to terminate the iteration when a carefully chosen stopping cri-
terion is satisfied. Such characteristics, which distinguish this
work from other iterative demosaicing techniques (e.g., alter-
nating projection that does target at the limiting solution [17]),
gives the name “demosaicing by successive approximation.”

IV. STOPPING CRITERION FOR ARTIFACTS SUPPRESSION

In this section, we first study the cause of two plagues with
CFA demosaicing: color misregistration and zipper artifacts.
Then, we propose a spatially adaptive stopping criterion for sup-
pressing both types of artifacts.

A. Color Misregistration and Zipper Artifacts

Our studies with the proposed iterative demosaicing tech-
nique indicate that there are mainly two types of sources con-
tributing to artifacts in a demosaiced image: 1) when the color
difference rule is not sufficiently enforced for certain regions,
we often observe annoying color misregistration artifacts (see
Fig. 7); 2) when the color difference rule is overly enforced
for certain regions, we might observe zipper artifacts [8] (see
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Fig. 7. (a) Original portion (100� 100) of img8 at the low resolution (s = 2). (b) Demosaiced 100� 100 image after three iterations. (c) Demosaiced 100� 100
image after 20 iterations. (d) Demosaiced 400� 400 image of the same portion after three iterations at the full resolution (s = 0).

Fig. 8). To the best of our knowledge, the cause of these arti-
facts has not been fully understood in the open literature.

In this paper, we argue that color misregistration artifacts are
closely related to frequency aliasing in the CFA image. It is
trivial to observe that the amount of aliasing in green plane is
less than that in red/blue planes due to a higher sampling ratio.
The nontrivial part, which has been largely overlooked by pre-
vious work on iterative demosaicing, is that the impact of fre-
quency aliasing on image demosaicing is a complicated spa-
tially varying phenomenon. Roughly speaking, aliasing renders
it more difficult to enforce the color difference rule for spatially
high-frequency components (edge areas) than spatially low-fre-
quency components (smooth regions). When the sampling dis-
tance of Bayer pattern happens to match the interedge distance
(hence, serious aliasing is introduced), it requires more itera-
tions to enforce the color difference rule. The notorious color
misregistration artifacts is the direct consequence of insufficient
number of iterations.

To observe the impact of spatial frequency and aliasing on
CFA demosaicing, we take a typical image from our data set
(img8) as the example. The fence portion of this image has
small interedge distance and consequently suffers from serious

aliasing as spatial resolution drops to 512 768. Fig. 7(b)–(d)
compare the demosaicing result of the fence portion at dif-
ferent resolutions. It can be observed that at the resolution of
512 768, it takes as many as 20 iterations to get away with
the color misregistration artifacts [compare Fig. 7(b) and (c)].
While at the full resolution (2048 3072, no aliasing), iterative
demosaicing achieves satisfactory result after just three itera-
tions [Fig. 7(d)]. By contrast, if we inspect the other portion of
512 768 img8 which contains less aliasing (refer to Fig. 8),
it also takes as few as three iterations to achieve satisfactory
results.

Unlike color misregistration artifacts, zipper artifacts repre-
sent the other end of the spectrum—they often show up when
we terminate the iterations not too early but too late (of course,
zipper artifacts could also occur if no iteration is performed
at all, but here our focus is iterative demosaicing). It is easy
to see that a worse estimate of green pixels will also lead to
a worse estimate of red/blue pixels (i.e., iterative demosaicing
enters the negative-gain loop). Since the color difference rule
only approximately holds within the object boundary, over-en-
forcing it has the risk of violating geometric constraint of edges
and introducing zipper artifacts. This explains why zipper ar-
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Fig. 8. Limiting solution of iterative demosaicing is risky to zipper artifacts. (Left) Demosaiced image after three iterations. (Right) Demosaiced image after 20
iterations (limiting solution).

Fig. 9. Impact of starting condition on MSE performance for img8. Solid line:
bilinear interpolation. Dashed line: edge-sensitive interpolation.

tifacts mostly show up around smooth regions near edges. For
example, Fig. 8 shows the demosaicing result for the tyre por-
tion of img8 at the resolution of 512 768, where low spa-
tial-frequency components are dominant and aliasing is barely
noticeable. Iterative demosaicing achieves satisfactory results
after three iterations; however, if we let iterative demosaicing
run until the convergence, undesirable zipper artifacts stick out.

B. Spatially Adaptive Stopping Criterion

Based on the above discussion, we conclude that iterative
demosaicing requires a spatially adaptive stopping criterion in
order to minimize the risk of introducing either type of arti-
facts. For certain regions (low aliasing), we want to select
a large threshold to terminate the algorithm after few iterations;

Fig. 10. Evolution of log(E ), log(E ), and log(E ) as the iteration number
increases.

but for other regions (high aliasing), we want to choose a
small threshold so the iteration will continue until close to the
convergence. The key is how to design an appropriate strategy
of separating from .

To match the linear interpolative models of color difference in
our iterative demosaicing algorithm, we propose the following
classification strategy for a given image.

1) Calculate the color difference signals
, .

2) Apply Laplacian filter defined in (7)
to , to obtain , .
3) Declare pixel if or

; otherwise, .
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With the classification result, the iteration at the position
is terminated if the following condition is satisfied

(17)

where the threshold is given by

(18)

It should be noted that the stopping criterion is based on the
mean-square error (MSE) of color planes between the th and
the th iteration. Due to the convergence of our iterative
demosaicing algorithm, the values of , , and would
monotonically decrease to zero (refer to Fig. 10), which sup-
ports the validity of threshold-based stopping criterion. The sug-
gested threshold values are , . As we can see
in the next section, the proposed spatially adaptive stopping cri-
terion is highly useful to the suppression of both color misreg-
istration and zipper artifacts.

We summarize our iterative demosaicing algorithm as fol-
lows.

Demosaicing Algorithm by Successive Approximation:

1)Initialization: Use standard intraplane
interpolation techniques (bilinear [5])
to fill in the missing R and B pixels and
edge-sensitive interpolation [4] to handle
G pixels.
2) Spatial classification: Use the classi-
fication strategy proposed above to divide

into two regions: .
3) Iteration: Alternate the following two
updating procedures.
Update the R channel by (11)–(16) and the
B channel similarly.
Update the G channel at red pixels by
(9)–(10) and similarly at blue pixels.
4. Termination: Stop the iteration as soon
as the stopping criterion (17)–(18) is
satisfied.

Remark: If it is known a priori that the aliasing contained in
CFA is negligible (e.g., when we apply iterative demosaicing at
thefullresolution2048 3072),wemightskipstep2)anddirectly
label all pixels as low-aliasing class (i.e., , ).

V. SIMULATION RESULTS

In this section, we report our experiment results with a
subset of 12 Kodak photographic images. Kodak test images
are available at a variety of resolutions ( ,

). Most previous works on image demosaicing are
reported for (quarter-resolution, noticeable aliasing).
The software implementation of our demosaicing algorithm
(MATLAB source codes) along with the 12 512 768 test im-
ages are available at http://www.csee.wvu.edu/~xinl/demo/de-
mosaicing.html.

TABLE II
MEAN SQUARE ERROR PERFORMANCE COMPARISON

OF DIFFERENT DEMOSAICING METHODS

TABLE III
S-CIELAB MEASURE (�E ) COMPARISON

OF DIFFERENT DEMOSAICING METHODS

Two objective quality measures are used to evaluate the
performance of demosaicing algorithms: MSE metric and
S-CIELab metric [22], [8]. For color images, human
vision system-based S-CIELab metric is more appropriate than
MSE metric. However, since MSE metric has been widely used
in the literature of CFA demosaicing, we choose to report both.
Additionally, we include subjective quality comparison to sup-
port the effectiveness of our new demosaicing technique. The
readers are suggested to visit the above website to evaluate the
visual quality of reconstructed images by various demosaicing
techniques on a monitor.
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Fig. 11. (a) Portion of original img4. (b) Reconstructed image by [17]. (c) Reconstructed image by [8]. (d) Reconstructed image by [7]. (e) Our scheme (universal
threshold � = 4). (f) Our scheme (spatially adaptive threshold � = 4 and � = 0:05).

Fig. 12. (a) Portion of original img8. (b) Reconstructed image by [17]. (c) Reconstructed image by [8]. (d) Reconstructed image by [7]. (e) Our scheme (universal
threshold � = 4). (f) Our scheme (spatially adaptive threshold � = 4 and � = 0:05).
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A. Initial Condition and Convergence Property

To illustrate the sensitivity of iterative demosaicing to the
initial condition, three different intraplane interpolation tech-
niques have been tested for the green pixels: bilinear interpo-
lation, edge-sensitive interpolation [4], and edge-directed inter-
polation [14]. Fig. 9 compares the evolution of MSE under the
first two initial conditions: bilinear and edge sensitive (the third
[14] achieves very similar result to [4], but it is much more com-
putationally expensive). It can be observed that edge-sensitive
interpolation does lead to smaller MSE than bilinear at the price
of slightly increased complexity. Therefore, we suggest the use
of edge-sensitive interpolation at the initialization.

To see the convergence property of the proposed iterative de-
mosaicing, we show in Fig. 10 the evolution of MSE terms ,

, as the function of iteration number (we plot
instead of in the figure to facilitate visual inspection). It can
be verified that all those terms monotonically decrease as the it-
eration number increases. Such observation validates the use of
a threshold to terminate the iteration. We note that comparing
Figs. 9 and 10 clearly shows that the limiting solution does not
render the smallest MSE. It is the intelligent choice of stopping
criterion that achieves nearly optimal MSE result and avoids the
potential zipper artifacts.

B. Performance Comparison With the Benchmarks

Two recent image demosaicing techniques are used as the
benchmarks: [8] and [17]. Since the work in [7] corresponds
to our scheme with exact one iteration and a simplified starting
point (bilinear interpolation), we include [7] into the compar-
ison, as well. Therefore, the gain over [7] is precisely due to
the idea of iterative demosaicing and improved initial condi-
tion. The work in [17] represents another class of iterative demo-
saicing using convex-set projection theory. Our scheme and [17]
share the same initial condition (edge-sensitive interpolation for
green pixels) but employ different iterative updating strategies.
The most recent work [8] emphasizes the suppression of demo-
saicing artifacts by post processing in a noniterative framework.

Tables II and III compare the MSE and S-CIELAB perfor-
mance among different schemes respectively. We use bold-type
font to highlight the smallest MSE valueacross each row. It can be
observed that our algorithm achieves the best MSE performance
in most situations. On S-CIELAB performance, ours appears to
be comparable with scheme [8] (the post-processing step in [8]
contributes to its excellent performance). We also note
that in this experiment, a universal threshold value
is chosen for all pixels in our scheme. Such a strategy is not the
best for the subjective quality of reconstructed images but has
been found nearly optimal on objective performance.

To appreciate the effectiveness of the proposed spatially
adaptive stopping criterion on suppressing artifacts (i.e., from a
universal threshold to two threshold values , ),
we use img4 and img8—two images with relatively large amount
of aliasing, which has caused tremendous difficulty to CFA
demosaicing. Figs. 11 and 12 compare the demosaiced images by
the benchmark schemes and our iterative demosaicing with and
without spatially adaptive stopping criterion. We observe that
color misregistration artifacts have been successfully suppressed

by the two-class stopping criterion, especially for img8. By
contrast, demosaiced images by the existing techniques [17], [8]
still suffer from noticeable artifacts due to color misregistration.

C. Complexity Cost and Memory Requirement

It is straightforward to estimate the computational cost of the
proposed demosaicing algorithm. Since we use the same edge-
sensitive interpolation as [17], the cost at the starting point is the
same. At each iteration, it takes additions and
multiplications to update R, G, and B channels according to
(9)–(16). The number of iterations is typically in the range of
3–5 for the test images, which amounts to a total of 10–15
arithmetic operations. Iterative method in [17] requires about
480 additions and multiplications due to wavelet filtering
involved at each iteration. Iterative method in [16] is also com-
putationally expensive due to the calculation of the color ratio
and edge indicator function (both require nonlinear operations)
at each iteration.

We have also compared the memory requirement for different
iterative demosaicing schemes. Since our scheme is directly
built upon edge-sensitive interpolation [4] and color-difference
interpolation [7], the memory requirement is about the same
(note that color plane updating can be implemented by in-place
operations). According to [7], when edge-sensitive or color-dif-
ference interpolation is implemented on a DSP, it requires triple
the number of memory access compared with bilinear interpola-
tion. Such requirement is approximately 25% lower than that of
alternating projection scheme [17] with one-level wavelet trans-
form. As the level number increases, [17] requires more memory
space to store high-band wavelet coefficients.

The new demosaicing algorithm has been implemented using
both MATLAB and C. The running time is reported with respect
to a Pentium-IV Dell Laptop (2.4 GHz). We have found that the
actual running time of iterative demosaicing is typically 5–10
s, including the initialization (edge-sensitive interpolation). By
contrast, it takes the alternating projection scheme [17] 10–15 s.
Despite being a noniterative scheme, the software implementa-
tion of [8] appears to take much longer time (several minutes).
The C-code implementation of our iterative demosaicing algo-
rithm runs even faster and the overall processing time is less
than a second for a 512 768 image.

VI. CONCLUDING REMARKS

In this paper, we present a new, fast, and efficient demosaicing
technique. It is argued that the linear interpolation model works
more effectively on color difference than color ratio signals. Our
approach successively refines the estimate of missing data by
enforcing the color difference rule at each iteration. We also in-
vestigate the cause of color misregistration and zipper artifacts
in iterative demosaicing and propose an effective spatially adap-
tive stopping criterion to suppress both types of artifacts. Exten-
sive experiment results are used to demonstrate the effectiveness
of our new demosaicing technique. The proposed scheme is ca-
pable of achieving at least comparable and often better perfor-
mance than existing iterative demosaicing techniques at the cost
of lower computational complexity.
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APPENDIX

In this appendix, we show that the constraint set defined by
the linear interpolative model in the color difference domain is
convex. Such a set can be written by

, where denotes the local neigh-
borhood of .

Proof

Let us take two points from set

then, for an arbitrary point between them, i.e.

Therefore, we conclude that is a convex set.
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