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ADAPTIVE DEMOSAICING WITH THE PRINCIPAL VECTOR METHOD 
Ramakrishna Kakarala and Zachi Baharav 

Abstract-Demosaieing is the process of interpolating the 
missing colors in an image that is acquired from a digital 
image sensor equipped with e color fllter array. This paper 

based on the Jacobian matrix of the color map and neigh- 
borhood voting. The algorithm requires only additions, 
subtractions end shifts, end is therefore attractive from a 
computational point of view. Comparisons are provided to 
show that the algorithm improves on published algorithms 
in terms of complexity or image quality. 

In this paper, we propose an adaptive algorithm which 
produces images with quality comparable to CCR, but with 

parable to GRAD or PRED. The new algorithm, which we 
refer to as the principal vector method (PVM), relies on 
the ~ ~ ~ ~ b i ~  
and employs a voting Scheme to determine the interPola- 
tion direction. 

describes a spatially adaptive demosaieing algorithm that is a greatly reduced which is corn- 

of the color mapping at every 

11. PRELIMINARY CONCEPTS 
I.  INTRODUCTION 

A continuous color image may be viewed as a m a p  
ping from a two-dimensional (24)) domain to a three- 
dimensional (SD) space, the color space. The RGB color 
space is used in this paper, but the apply to any 
color space. F~~ RGB, the jacObian is 

Most digital cameras use a single image sensor. In order 
to obtain a color image, the sensor is fitted with an array 
of color filters, with one filter for each pixel. The widely- 
used Bayer color filter array for red, green and blue (RGB) 
sensors uses the 2 x 2 pattern shown below, repeated across 
the sensor: J = [ V R  VG V B ] ,  

G R  
B G  

Since each pixel obtains only one color, interpolation is re- 
quired to obtain a full color RGB image. Theinterpolation 
process is known as demosaicing, since it attempts to invert 
the sampling process of the color filter mosaic. 

Perhaps the simplest possible demosaicing method is bi- 
linear interpolation, which may be realized by convolution 
and is not spatially adaptive. Bilinear interpolation pro- 
duces blurry images and does,not suppress sliming. In 
particular, the aliasing that results from undersampling of 
colors is visible as colored fringes on high-frequency spatial 
patterns. The aim of adaptive interpolation schemes is to 
avoid blurriness and suppress aliasing by sensing edges and 
interpolating along them, rather than across them; see [6] 
for a discussion of this point. 

Several adaptive demosaicing schemes have been pub- 
lished previously. The edge-weighted interpolation method 
with color cross ratio [2] (hereafter, CCR) produces high- 
quality images but requires considerable computation. 
CCR requires three image iterations to adjust, ratios of 
color values, followed by an inverse diffusion stage. A much 
simpler algorithm [3] uses gradients in a single color plane 
as spatial predictors (hereafter, GRAD) to determine the 
direction of interpolation. Although simpler, GRAD does 
not suppress aliasing as well as CCR. Another simple algo- 
rithm [6] uses predictors from two color planes (hereafter, 
PRED) to determine the interpolation direction. 
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where V denotes thegradient, e.g., V R  = [aR/az,aR/a#]*. 
The Jacobian captures the local first-order variation in the 
color images, and has been proposed as a measure suitable 
for color edge detectionll, pp 334-3351 . 

Since J is a matrix, it has a singular value decomposition 
(SVD), which may be written 

t J = USVt = 812112): + 82112V2. 

Here s1 2 s2 2 0 are the singular values, and Uk, vk are 
respectively, the left and right k-th singular vectors. It is 
well known that the best rank one approximation to  J (in 
terms of minimizing the sum of squared errors) is 

J slulv: 

In particular, the 2 x 1 vector u1 provides the direction of 
largest variation for the color image, and is the best fit in 
the rank-one sense to  the three gradients {VR,  VG,  V B } .  
We call u1 the principal vector of the Jacobian. 

The degree to  which the principal vector fits the gradi- 
ents may be determined from the singular values. Since 

llJ - 81UlVE112 = 82, 

where the norm 11 . (12 is the sum of squared entries in the 
matrix, it follows that the degree of fit is measured by 

82 

81 + 32 
A =  -. 

Because 81 2 8 2 ,  we see that 0 5 X 5 f .  When X = 0, 
the principal vector gives a perfect fit (the gradients are all 
parallel in this case), whereas if X = ?. the fit is poorest. 

12' An example of a situation when X = I occurs is when two 
of the three gradients point in orthogonal directions, and 
the third gradient is zero. 
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R 
u2 

L f 
Combining these equations with eq.(l), we obtain a simpler 
formulation of (1) for sampled image data: 

I =aI,,+(l-a)I,, with a = X~l ( l )~+( l - -X)u2(1 )~ .  (2) 

Fig. 1. A typical arrangement of red, green, and blue gradient vectors 
is shown, as well 84 the corresponding vecton) "1 andgul. 

111. INTERPOLATION BASED ON THE PRINCIPAL VECTOR 

The previous section shows how, through the SVD, the 
information in the Jacobian J is usefully encapsulated by 
the principal vector u1 and the measure of fit A. An adap 
tive color interpolation scheme based on u1 and X is now 
described. 

Adaptive interpolation works by interpolating a missing 
value from neighbors in the direction of least change. Con- 
sider the arrangement shown in Fig. 1. The R, G, and B 
gradient vectors point in the directions of greatest change 
for their respective colors. The principal vector ul is the 
best fit to the RGB gradients, and the vector 212, which is 
always perpendicular to 111, points in the direction of least 
overall change. Now suppose that I1 is the result of in- 
terpolating along the direction ul , and Iz is the result of 
interpolating along 212. Then the total interpolation, de- 
noted I, should be a weighted combination of I1 and 12, 
where the weighting is based on the measure of fit X as 
follows: 

This weighting guarantees that the total interpolation 
varies continuously between I = 1 2 ,  when X = 0 and there- 
fore the principal vector perfectly fits the gradients, and 
I = (I1 + I2)/2, when X = 

Since image data are sampled on a rectangular grid, we 
implement eq. (1) by using interpolated values in the hor- 
izontal and vertical directions instead of the continuously- 
varying directions of 211 and u2. Let I h  and I ,  respectively 
denote the interpolated values in the horizontal and ver- 
tical directions. Intuitively, I h  and I, are computed by 
forming simple linear combinations of pixel values along 
rows for Ih or, alternatively, along columns for I". Next, 
let u1 = [u1(l),u1(2)lt and u2 = [212(l),u~(2)]~, and note 
that both u1 and ut are unit-length vectors. Noting that 
ul(1)' measures the length of the horizontal component 
of the principal vector, and similarly 1 - ul(1)' = u1(2)' 
measures the vertical component length, we define 

I = X I 1  + (1 - X ) I Z .  (1) 

and the fit is poorest. 

11 = uI(1)'Ih + u1(2)'1", 

and similarly 

Computing the value of I in eq. (2) requires three terms: 
I h ,  I,, and a. The first two terms, Ih and I,, are straight- 
forward to compute, since they involve only simple linear 
combinations of pixel values. The third term, a, requires 
the SVD of J and therefore involves much more computa- 
tion. To avoid the computational burden of evaluating an 
SVD at every pixel, we now examine methods to estimate 
an approximate value for a. 

IV. VOTING AND THE MAJORITY RULE 

We make three heuristic assumptions in order to simplify 
computation of a, ' the weighting coefficient in (2). 
1. Assume that the value of a can be quantized to three 
levels, a = 0, 1, and f .  This means the total interpolation 
is either purely horizontal, purely vertical, or an average 
of the two. Although this has the potential to produce a 
staircase approximation to straight lines, the degradation 
is hardly noticeable since we start with undersampled data 
in the first place. 
2. Assume that the direction of the principal vector u1 can 
be quantized to be one of only two possibilities: horizontal 
or vertical. We say that 01 is horizontal if lul(l)l 2 lul(2)l, 
and vertical otherwise. 
3. Assume that the decision whether the principal vector 
is horizontal or vertical can be made by applying the ma- 
joritg d e :  if the majority of elements of the top row of the 
Jacobian (which are horizontal derivatives) exceed in ab- 
solute value the corresponding elements of the bottom row 
(which are vertical derivatives) then the principal vector is 
horizontal; otherwise it is vertical. 

To illustrate the majority rule, suppose the Jacobian is 

J = [ :  ;"I. 
Then two of the elements of the top row exceed their coun- 
terparts in the bottom row in absolute value, and there 
fore the majority rule says that the principal vector is 
horizontal. Indeed, the principal vector for this matrix 
is u1 = [0.82 0.571, which has a larger first element and 
is therefore horizontal. The majority rule is not always 
correct. For example, if the red gradient is large and hor- 
izontally directed, but the green and blue gradients are 
small and vertically directed, the principal vector tends to 
align itself horizontally in opposition to the majority. This 
type of arrangement does not occur frequently in real im- 
ages, since there is considerable correlation between colors. 
To test the validity of the majority rule, we performed an 
experiment with 1000 randomly-generated Jacobian matri- 
ces with independent, normally-distributed elements. The 
majority rule correctly determined the horizontal/vertical 
orientation of the principal vector 91% of the time, even 
though a Jacobian matrix with statistically independent 
elements (and therefore no correlation between colors) is 
the worst-case scenario. 
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While the majority rule gives us the directippa8 the prin- 
cipal vector, it does not by itself determine”&.” To do so, 
we examine the number of horizontal derivatives exceed- 
ing vertical derivatives. Let the notation A > B denote 
a conditional whose value is 1 if A > B, and 0 otherwise. 
Then the number of horizontal derivatives exceeding verti- 
cal derivatives is 

- 
k = l  ‘ 

If VJ = 3, then we would want a = 0 so that the inter- 
polation is vertical; if VJ = 0, then we would want a = 1 
to force horizontal interpolation. However, if VJ = 1 or 
VJ = 2, then there is not a unanimous indication, and it 
seems appropriate to set a = ). 

The selection mechanism for a described above is ba- 
sically a voting scheme, where each column of the Jaco- 
bian gets one vote. However, there is clearly information 
in the neighborhood around a pixel that should influence 
the choice of a. For example, in a smoothly varying re- 
gion, it makes sense to choose a in a consistent manner. 
The voting scheme may be extended to accomodate neigh- 
borhood votes as well as votes at each pixel, as follows. 
The pixel where interpolation is to occur gets three votes, 
as described above. Neighboring pixels get one vote each, 
which is equal to 1 if VJ 2 2 at that pixel, and 0 otherwise. 
Specifically, let 

The total votes collected at each pixel is now defined to be 
the sum of the votes VJ from the Jacobian at that pixel, 
as well as the votes at neighboring pixels, denoted V , :  

k=l 

The neighborhood N may be defined to be any subset of 
pixels preceeding the current pixel in a raster scan of the 
image. For example, 

Ni ={(z- ~,Y),(z,Y - 1)) (3) 

is the neighborhood of adjacent pixels to the left and also 
above the current pixel. 

Once the votes are collected at the current pixel, the 
weight a is assigned. The votes are divided into three 
ranges: first, V < T I ,  in which case a = 1; second, 
TI 5 V 5 Tz,  in which case a = 0.5; and third, TZ < V ,  in 
which case a = 0. The choice of TI and 7’2 depends on the 
size of the neighborhood N. For example, if N is chosen as 
in (3), then TI = 2,Tz = 3. In this situation the maximum 
number of votes is five. With TI and Tz so chosen, if less 
than two votes for vertical interpolation are received, then 

horizontal interpolation is chosen with a = 1. If either 
four or five votes are obtained, then vertical interpolation 
is chosen with a = 0. In the middle ground where two or 
three votes are obtained, then averaging of horizontal and 
vertical is applied with a = 0.5. Other thresholds may be 
used if a different neighborhood N is chosen. 

Note that if the neighborhood N contains vertically adja- 
cent pixels, then an additional memory is required to store 
the value of maj{J(z,y)} at each pixel on the previous 
lines. The memory requirement is only 1 bit per pixel for 
each line that is stored. 

v. PVM ALGORITHM 

The complete algorithm for demosaicing using interpe 
lation along the principal vectors is now described. 
1. The Jacobian is computed at every pixel. This requires 
estimates of red, green, and blue derivatives, both horizon- 
tally and vertically. Since only one color is present at each 
pixel, the derivatives must be computed from neighbors. 
Any discrete approximation to the first derivative may be 
used, from simple differences to regularized schemes for 
noise suppression. Simple, convolution-based derivative es- 
timators [7] are used to obtain the results shown below in 
Section VI. 
2. The missing green values are interpolated by applying 
the voting mechanism to determine a at each red or blue 
pixel, and subsequently employing eq.(2). The fully popu- 
lated green plane after this interpolation is denoted G. 
3. The missing red and blue values are interpolated in two 
stages. First, the difference images between the respective 
color and G is formed. For example, for the red plane, let 

D R G ( z , I )  =R(z,Y) -6(z,Y), 
if location (2, y) is a red pixel, and D ~ G  = 0 otherwise. A 
similar method is used to form DBG. the difference image 
for the blue plane. The difference images may be interpo- 
lated using either bilinear interpolation, or alternatively, to 
provide a smoother result at low light levels, the “polyphase 
interpolation” method [4, pg 94-95], Briefly, the polyphase 
method interpolates in two stages, the first being for val- 
ues that have four diagonal neighbors with existing values, 
and the second being for values with two existing neigh- 
bors and two interpolated neighbors computed from the 
first stage. In the second stage the interpolated neighbors 
are weighted less than the existing neighbors; see [4] for de 
tails. This method achieves a smooth interpolation without 
propagating outlier values. 
4. Using the now fully populated difference images, de- 
noted DRG and DBG, the interpolated red and blue values 
are obtained by addition with the original green values. For 
example, for the red plane, set 

R(z, U) = D R G ~  V) + c(z, v ) ,  
if ( z , ~ )  is not a red pixel, and 8(z,y) = R(z,  y) otherwise. 
A similar process is followed to obtain the fully populated 
blue plane B(z, y). 
5. The three fully-populated color planes, 8, G, and B 
form the output of the interpolator. 
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Fig. 2. Original image “lighthouse”. The full-color image is available 
on the web [SI. 

Using standard computational methods, it is possible to 
perform all computations required above with only integer 
additions, comparisions, and bit shifts. 

VI. EXAMPLES A N D  DISCUSSION 

Figure 2 shows the image “lighthouse”, which is diffi- 
cult to demosaic due to the high spatial frequency content. 
Also, the image has many neutral surfaces which makes it 
easy to observe color variations due to aliasing. Figure 3 
shows the result using PVM with bilinear difference image 
interpolation. The result is comparable in quality to that 
obtained with CCR [2]. 

Figure 4 shows the result using the GRAD method. It 
it clear that PVM shows considerably less aliasing. Fig- 
ure 5 shows that the PRED algorithm provides a result 
of comparable quality to PVM. Portions of the demosaiced 
images for both PVM and the PRED algorithms are shown 
in Fig. 6 to provide a more detailed comparison. It can be 
seen that PVM improves on PRED in two of the three 
regions shown. 

The usefulness of neighborhood voting in PVM is now 
illustrated. Figure 7(a) shows a portion of the lighthouse 
image with N as specified in eq. ‘(3). Figure 7(b) shows the 
same region, this time processed using N = 0, or no neigh- 
borhood. It is clear that Fig. 7(a) improves on Fig. 7(b) in 
terms of reducing isolated interpolation errors, and hence 

Fig. 3. Lighthouse image demosaiced with the method proposed in 
this report (PVM). See [E] for the full-color image. 

- 
using a neighborhood provides smoother interpolation. ~ i ~ .  4. Lighthouse image demosaiced with the G~~ method, see 

[a] for the full-color image. 
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b 

Fig. 7. Comparison showing advantage of using neighborhood voting. 
Part (a) shows result using neighborhood NI, and in part (b), no 
neighborhood voting is used. See [E] for the full-color image. 

VII. SUMMARY 
This paper describes a new adaptive demosaicing algo- 

rithm, which uses a voting scheme to determine the direc- 
tion of interpolation at each pixel. Votes are counted from 
the neighborhood as well as from measurements taken at 
the pixel itself. The computational requirements are rel- 
atively low, and the resulting images are largely free of 
blurring and aliasing artifacts. 
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