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Exposing Digital Forgeries in
Color Filter Array Interpolated Images

Alin C. Popescu and Hany Farid†

Abstract

With the advent of low-cost and high-resolution digital cameras, and sophisticated photo editing
software, digital images can be easily manipulated and altered. Although good forgeries may leave no
visual clues of having been tampered with, they may, nevertheless, alter the underlying statistics of
an image. Most digital cameras, for example, employ a single sensor in conjunction with a color filter
array (CFA), and then interpolate the missing color samples to obtain a three channel color image. This
interpolation introduces specific correlations which are likely to be destroyed when tampering with an
image. We quantify the specific correlations introduced by CFA interpolation, and describe how these
correlations, or lack thereof, can be automatically detected in any portion of an image. We show the
efficacy of this approach in revealing traces of digital tampering in lossless and lossy compressed color
images interpolated with several different CFA algorithms.

I. INTRODUCTION

When it first surfaced, the digital image of Jane Fonda and Senator John Kerry sharing a stage at an
anti-war rally was explosive 1. It was also a fake. The image was created by digitally splicing together two
separate images. Because of the ease with which digital media can be manipulated, these types of digital
forgeries are becoming more common. As a result, photographs no longer hold the unique stature as a
definitive recording of events. Digital watermarking has been proposed as a means by which an image
can be authenticated (see, for example, [1], [2] for general surveys). The major drawback of this approach
is that a watermark must be inserted at the time of recording, which would limit this approach to specially
equipped digital cameras. This method also relies on the assumption that the digital watermark cannot
be easily removed and reinserted — it is not yet clear whether this is a reasonable assumption (e.g., [3]).
In contrast to these approaches, we and others have proposed techniques for detecting tampering in
digital images that work in the absence of any digital watermark or signature [4], [5], [6], [7], [8], [9],
[10]. These techniques work on the assumption that although digital forgeries may leave no visual clues
of having been tampered with, they may, nevertheless, alter the underlying statistics of an image. Most
digital cameras, for example, capture color images using a single sensor in conjunction with an array
of color filters. As a result, only one third of the samples in a color image are captured by the camera,
the other two thirds being interpolated. This interpolation introduces specific correlations between the
samples of a color image. When creating a digital forgery these correlations may be destroyed or altered.
We describe the form of these correlations, and propose a method that quantifies and detects them in
any portion of an image 2. We show the general effectiveness of this technique in detecting traces of
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1The actress Jane Fonda was well known for her strong views against the involvement of the United States in the Vietnam
war. After serving in the Vietnam war, John Kerry spoke out against the war. The photograph of Fonda and Kerry appeared
as Kerry was running for President of the United States, and came at a time when his involvement in the anti-war movement
was under attack.

2Portions of this work also appear in the Ph.D. dissertation [11].
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Fig. 1. The top-left portion of a CFA image obtained from a Bayer array. The red, r2i+1,2j+1 , and blue, b2i,2j , pixels are sampled
on rectilinear lattices, while the green, g2i+1,2j and g2i,2j+1 , pixels are sampled twice as often on a quincunx lattice. Notice that
at each pixel location only a single color sample is recorded.

digital tampering, and analyze its sensitivity and robustness to simple image distortions (compression,
noise, and gamma correction).

II. COLOR FILTER ARRAY INTERPOLATION ALGORITHMS

A digital color image consists of three channels containing samples from different bands of the color
spectrum, e.g., red, green, and blue. Most digital cameras, however, are equipped with a single CCD or
CMOS sensor, and capture color images using a color filter array (CFA). The most frequently used CFA,
the Bayer array [12], employs three color filters: red, green, and blue. The red and blue pixels are sampled
on rectilinear lattices, while the green pixels are sampled on a quincunx lattice, Fig. 1. Since only a single
color sample is recorded at each pixel location, the other two color samples must be estimated from the
neighboring samples in order to obtain a three-channel color image. Let S(x, y) denote the CFA image
in Fig. 1, and R̃(x, y), G̃(x, y), B̃(x, y) denote the red, green, and blue channels constructed from S(x, y)
as follows:

R̃(x, y) =

{

S(x, y) if S(x, y) = rx,y

0 otherwise
(1)

G̃(x, y) =

{

S(x, y) if S(x, y) = gx,y

0 otherwise
(2)

B̃(x, y) =

{

S(x, y) if B(x, y) = bx,y

0 otherwise
, (3)

where (x, y) span an integer lattice. A complete color image, with channels R(x, y), G(x, y), and B(x, y)
needs to be estimated. These channels take on the non-zero values of R̃(x, y), G̃(x, y), and B̃(x, y), and
replace the zeros with estimates from neighboring samples. The estimation of the missing color samples
is referred to as CFA interpolation or demosaicking. CFA interpolation has been extensively studied and
many methods have been proposed (see, for example, [13] for a survey, and [14], [15], [16] for more recent
methods). We will briefly describe seven demosaicking techniques for the Bayer array that are used in our
studies. In selecting these seven algorithms, we have tried to cover a range of CFA algorithms, from the
simple (bilinear), to ones that are employed in commercially available digital cameras (gradient-based),
to more recent algorithms that may one day be employed in commercial digital cameras.

A. Bilinear and Bicubic

The simplest methods for demosaicking are kernel-based interpolation methods that act on each
channel independently. These methods can be efficiently implemented as linear filtering operations on
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each color channel:

R(x, y) =

N
∑

u,v=−N

hr(u, v)R̃(x− u, y − v) (4)

G(x, y) =

N
∑

u,v=−N

hg(u, v)G̃(x− u, y − v) (5)

B(x, y) =

N
∑

u,v=−N

hb(u, v)B̃(x− u, y − v), (6)

where R̃(·), G̃(·), B̃(·) are defined in Equations (1)-(3), and hr(·), hg(·), hb(·) are linear filters of size
(2N + 1)× (2N + 1). Different forms of interpolation (nearest neighbor, bilinear, bicubic [17], etc.) differ
in the form of the interpolation filter used. For the Bayer array, the bilinear and bicubic filters for the red
and blue channels are separable. The 1-D filters are given by:

hl =
[

1/2 1 1/2
]

hc=
[

−1/16 0 9/16 1 9/16 0 −1/16
]

, (7)

and the 2-D filters are given by hT
l hl and hT

c hc. The bilinear and bicubic filters for the green channel,
however, are no longer separable and take the form:

hl =
1

4





0 1 0
1 4 1
0 1 0



 hc =
1

256





















0 0 0 1 0 0 0
0 0 −9 0 −9 0 0
0 −9 0 81 0 −9 0
1 0 81 256 81 0 1
0 −9 0 81 0 −9 0
0 0 −9 0 −9 0 0
0 0 0 1 0 0 0





















. (8)

Using bilinear interpolation, for example, the color samples at pixel locations (3, 3), (3, 4), and (4, 4),
Fig. 1, are given by:

R(3, 3) = r3,3 G(3, 3) =
g2,3 + g3,2 + g3,4 + g4,3

4
B(3, 3) =

b2,2 + b2,4 + b4,2 + b4,4

4
(9)

G(3, 4) = g3,4 B(3, 4) =
b2,4 + b4,4

2
R(3, 4) =

r3,3 + r3,5

2
(10)

B(4, 4) = b4,4 R(4, 4) =
r3,3 + r3,5 + r5,3 + r5,5

4
G(4, 4) =

g3,4 + g4,3 + g4,5 + g5,4

4
. (11)

B. Smooth Hue Transition

Smooth hue transition CFA interpolation [18] is based on the assumption that color hue varies smoothly
in natural images, and can be assumed to be constant in a small neighborhood. Hue is defined here as
the ratio between a chrominance component (red or blue) and the luminance component (green). The
algorithm interpolates the green channel G̃(·), Equation (2), using bilinear interpolation, Section II-A,
to yield G(·). To estimate the missing red samples, the ratio R̃(·)/G(·) is bilinearly interpolated, then
pointwise multiplied by G(·). For example, the missing red values at locations (3, 4), (4, 3), and (4, 4),
Fig. 1, are given by:

R(3, 4) = G(3, 4) · 1

2

(

r3,3

G(3, 3)
+

r3,5

G(3, 5)

)

(12)

R(4, 3) = G(4, 3) · 1

2

(

r3,3

G(3, 3)
+

r5,3

G(5, 3)

)

(13)

R(4, 4) = G(4, 4) · 1

4

(

r3,3

G(3, 3)
+

r3,5

G(3, 5)
+

r5,3

G(5, 3)
+

r5,5

G(5, 5)

)

. (14)

The missing blue samples are estimated in a similar manner as the red samples.
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C. Median Filter

Median filter based CFA interpolation [19] is a two-step process. First the R̃(·), G̃(·), B̃(·) channels,
Equations (1)-(3), are each interpolated using bilinear interpolation, Section II-A. Next, the pairwise
differences of the interpolated channels (i.e., red minus green, red minus blue, and green minus blue)
are median filtered. Let Mrg(·), Mgb(·), and Mrb(·) denote the median filtered differences. At each pixel
location, the missing color samples are estimated as the sum or difference between the color samples
from the CFA image, Fig. 1, and the corresponding median filtered differences. For example, the missing
samples at locations (3, 3), (3, 4), and (4, 4) are estimated as follows:

G(3, 3) = r3,3 −Mrg(3, 3) B(3, 3) = r3,3 −Mrb(3, 3) (15)

R(3, 4) = g3,4 + Mrg(3, 4) B(3, 4) = g3,4 − Mgb(3, 4) (16)
R(4, 4) = b4,4 + Mrb(4, 4) G(4, 4) = b4,4 + Mgb(4, 4). (17)

D. Gradient-Based

Gradient-based CFA interpolation [20] is a multi-step method that preserves edge information by
preventing interpolation across edges. The green channel, G(·), is first estimated using an adaptive
interpolation technique. For example, in order to estimate the green values at location (3, 3) and (4, 4),
Fig. 1, derivative estimators along the horizontal and vertical directions are first computed:

H3,3 = |(r3,1 + r3,5)/2− r3,3| V3,3 = |(r1,3 + r5,3)/2− r3,3| (18)

H4,4 = |(b4,2 + b4,6)/2− b4,4| V4,4 = |(b2,4 + b6,4)/2− b4,4| . (19)

These estimators are referred to as classifiers. The estimated green values are then given by:

G(3, 3) =











g3,2+g3,4

2 H3,3 < V3,3
g2,3+g4,3

2 H3,3 > V3,3
g2,3+g3,2+g3,4+g4,3

4 H3,3 = V3,3

G(4, 4) =











g4,3+g4,5

2 H4,4 < V4,4
g3,4+g5,4

2 H4,4 > V4,4
g3,4+g4,3+g4,5+g5,4

4 H4,4 = V4,4.

(20)

The missing red samples are estimated by taking the difference image between the R̃(·) and G(·) channels,
bilinearly interpolating this difference, then adding back G(·). For example, the missing red samples at
(3, 4), (4, 3), and (4, 4), Fig. 1, are given by:

R(3, 4) =
(r3,3− G(3, 3))+ (r3,5−G(3, 5))

2
+ G(3, 4) (21)

R(4, 3) =
(r3,3− G(3, 3))+ (r5,3−G(5, 3))

2
+ G(4, 3) (22)

R(4, 4) =
(r3,3− G(3, 3))+ (r3,5−G(3, 5)) + (r5,3 −G(5, 3)) + (r5,5 −G(5, 5))

4
+ G(4, 4). (23)

The missing blue samples are estimated in a similar manner as the red samples.

E. Adaptive Color Plane

Adaptive color plane CFA interpolation [21] is a modification of the gradient-based interpolation
method. The green channel, G(·), is first estimated using adaptive interpolation. For example, in order
to estimate the green values at (3, 3) and (4, 4), Fig. 1, horizontal and vertical classifiers are computed as
the sum between first-order derivative estimates from the luminance (green) channel, and second-order
derivative estimates from the chrominance (red and blue) channels:

H3,3 = |g3,2 − g3,4|+ |−r3,1 + 2r3,3 − r3,5| V3,3 = |g2,3 − g4,3|+ |−r1,3 + 2r3,3 − r5,3| (24)
H4,4 = |g4,3 − g4,5|+ |−b4,2 + 2b4,4 − b4,6| V4,4 = |g3,4 − g5,4|+ |−b2,4 + 2b4,4 − b6,4| . (25)
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Using these classifiers, the estimated green values are given by:

G(3, 3) =











g3,2+g3,4

2 + −r3,1+2r3,3−r3,5

4 H3,3 < V3,3
g2,3+g4,3

2 + −r1,3+2r3,3−r5,3

4 H3,3 > V3,3
g2,3+g3,2+g3,4+g4,3

4 +
−r1,3−r3,1+4r3,3−r3,5−r5,3

8 H3,3 = V3,3

(26)

G(4, 4) =











g4,3+g4,5

2 + −b4,2+2b4,4−b4,6

4 H4,4 < V4,4
g3,4+g5,4

2 + −b2,4+2b4,4−b6,4

4 H4,4 > V4,4
g3,4+g4,3+g4,5+g5,4

4 +
−b2,4−b4,2+4b4,4−b4,6−b6,4

8 H4,4 = V4,4.

(27)

The estimation of the missing chrominance samples depends on their location in the CFA. At locations
where the nearest chrominance samples are in the same row or column, a non-adaptive procedure with
second-order correction terms is employed. For example, red and blue samples at (3, 4) and (4, 3) are
given by:

R(3, 4) =
r3,3 + r3,5

2
+
−G(3, 3) + 2G(3, 4)− G(3, 5)

2
(28)

B(3, 4) =
b2,4 + b4,4

2
+
−G(2, 4) + 2G(3, 4)− G(4, 4)

2
(29)

R(4, 3) =
r3,3 + r5,3

2
+
−G(3, 3) + 2G(4, 3)− G(5, 3)

2
(30)

B(4, 3) =
b4,2 + b4,4

2
+
−G(4, 2) + 2G(4, 3)− G(4, 4)

2
. (31)

At locations where the nearest chrominance neighbors are diagonally located, an adaptive procedure
is employed. For example, in order to estimate the missing chrominance samples at (3, 3) and (4, 4),
classifiers based on derivative estimates along the first and second diagonals are first estimated:

D1
3,3 = |b2,2 − b4,4|+ |−G(2, 2) + 2G(3, 3)−G(4, 4)| (32)

D2
3,3 = |b2,4 − b4,2|+ |−G(2, 4) + 2G(3, 3)−G(4, 2)| (33)

D1
4,4 = |r3,3 − r5,5|+ |−G(3, 3) + 2G(4, 4)−G(5, 5)| (34)

D2
4,4 = |r3,5 − r5,3|+ |−G(3, 5) + 2G(4, 4)−G(5, 3)| , (35)

then using these classifiers, the missing red and blue values are given by:

B(3, 3) =











b2,4+b4,2

2 + −G(2,4)+2G(3,3)−G(4,2)
2 D1

3,3 > D2
3,3

b2,2+b4,4

2 + −G(2,2)+2G(3,3)−G(4,4)
2 D1

3,3 < D2
3,3

b2,2+b2,4+b4,2+b4,4

4 +
−G(2,2)−G(2,4)+4G(3,3)−G(4,2)−G(4,4)

4 D1
3,3 = D2

3,3

(36)

R(4, 4) =











r3,5+r5,3

2 +
−G(3,5)+2G(4,4)−G(5,3)

2 D1
4,4 > D2

4,4
r3,3+r5,5

2 + −G(3,3)+2G(4,4)−G(5,5)
2 D1

4,4 < D2
4,4

r3,3+r3,5+r5,3+r5,5

4 + −G(3,3)−G(3,5)+4G(4,4)−G(5,3)−G(5,5)
4 D1

4,4 = D2
4,4.

(37)

F. Threshold-Based Variable Number of Gradients

Threshold-based variable number of gradients CFA interpolation [22] is a more complex demosaicking
method. At each pixel location, eight gradient estimates are computed using samples from a 5 × 5
neighborhood of the CFA image. These estimates are computed slightly differently depending on the
the color sample at the pixel under consideration: chrominance (red and blue) or luminance (green). For
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example, the eight gradient estimates at location (3, 3), Fig. 1, are given by:

N3,3 = |g2,3 − g4,3|+ |r1,3 − r3,3|+
|b2,2 − b4,2|

2
+
|b2,4 − b4,4|

2
+
|g1,2 − g3,2|

2
+
|g1,4 − g3,4|

2

E3,3 = |g3,2 − g3,4|+ |r3,3 − r3,5|+
|b2,2 − b2,4|

2
+
|b4,2 − b4,4|

2
+
|g2,3 − g2,5|

2
+
|g4,3 − g4,5|

2

S3,3 = |g2,3 − g4,3|+ |r3,3 − r5,3|+
|b2,2 − b4,2|

2
+
|b2,4 − b4,4|

2
+
|g3,2 − g5,2|

2
+
|g3,4 − g5,4|

2

W3,3 = |g3,2 − g3,4|+ |r3,1 − r3,3|+
|b2,2 − b2,4|

2
+
|b4,2 − b4,4|

2
+
|g2,1 − g2,3|

2
+
|g4,1 − g4,3|

2

NE3,3 = |b2,4 − b4,2|+ |r1,5 − r3,3|+
|g2,3 − g3,2|

2
+
|g3,4 − g4,3|

2
+
|g1,4 − g2,3|

2
+
|g2,5 − g3,4|

2

SE3,3 = |b2,2 − b4,4|+ |r3,3 − r5,5|+
|g2,3 − g3,4|

2
+
|g3,2 − g4,3|

2
+
|g3,4 − g4,5|

2
+
|g4,3 − g5,4|

2

NW3,3 = |b2,2 − b4,4|+ |r1,1 − r3,3|+
|g1,2 − g2,3|

2
+
|g2,1 − g3,2|

2
+
|g2,3 − g3,4|

2
+
|g3,2 − g4,3|

2

SW3,3 = |b2,4 − b4,2|+ |r5,1 − r3,3|+
|g2,3 − g3,2|

2
+
|g3,4 − g4,3|

2
+
|g3,2 − g4,1|

2
+
|g4,3 − g5,2|

2

while those at location (3, 4) are given by:

N3,4 = |b2,4 − b4,4|+ |g1,4 − g3,4|+
|g2,3 − g4,3|

2
+
|g2,5 − g4,5|

2
+
|r1,3− r3,3|

2
+
|r1,5 − r3,5|

2

E3,4 = |r3,3 − r3,5|+ |g3,4 − g3,6|+
|g2,3 − g2,5|

2
+
|g4,3 − g4,5|

2
+
|b2,4− b2,6|

2
+
|b4,4 − b4,6|

2

S3,4 = |b2,4 − b4,4|+ |g3,4 − g5,4|+
|g2,3 − g4,3|

2
+
|g2,5 − g4,5|

2
+
|r3,3− r5,3|

2
+
|r3,5 − r5,5|

2

W3,4 = |r3,3 − r3,5|+ |g3,2 − g3,4|+
|g2,3 − g2,5|

2
+
|g4,3 − g4,5|

2
+
|b2,2− b2,4|

2
+
|b4,2 − b4,4|

2
NE3,4 = |g2,5 − g4,3|+ |g1,6 − g3,4|+ |r1,5 − r3,3|+ |b2,6− b4,4|
SE3,4 = |g2,3 − g4,5|+ |g3,4 − g5,6|+ |b2,4 − b4,6|+ |r3,3− r5,5|

NW3,4 = |g2,3 − g4,5|+ |g1,2 − g3,4|+ |b2,2 − b4,4|+ |r1,3− r3,5|
SW3,4 = |g2,5 − g4,3|+ |g3,4 − g5,2|+ |b2,4 − b4,2|+ |r3,5− r5,3| .

Let Gx,y denote the set of gradient estimates at (x, y):

Gx,y = {Nx,y, Sx,y, Ex,y, Wx,y, NEx,y, NWx,y, SEx,y, SWx,y}. (38)

Eight average red, green, and blue values, one for each gradient direction, are then computed at each
pixel location. At location (3, 3), for example, the average values corresponding to the different gradient
regions are given by:

RN
3,3 = (r1,3 + r3,3)/2 GN

3,3 = g2,3 BN
3,3 = (b2,2 + b2,4)/2

RE
3,3 = (r3,3 + r3,5)/2 GE

3,3 = g3,4 BE
3,3 = (b2,4 + b4,4)/2

RS
3,3 = (r3,3 + r5,3)/2 GS

3,3 = g4,3 BS
3,3 = (b4,2 + b4,4)/2

RW
3,3 = (r3,1 + r3,3)/2 GW

3,3 = g3,2 BW
3,3 = (b2,2 + b4,2)/2

RNE
3,3 = (r1,5 + r3,3)/2 GNE

3,3 = (g1,4 + g2,3 + g2,5 + g3,4)/4 BNE
3,3 = b2,4

RSE
3,3 = (r3,3 + r5,5)/2 GSE

3,3 = (g3,4 + g4,3 + g4,5 + g5,4)/4 BSE
3,3 = b4,4

RNW
3,3 = (r1,1 + r3,3)/2 GNW

3,3 = (g1,2 + g2,1 + g2,3 + g3,2)/4 BNW
3,3 = b2,2

RSW
3,3 = (r3,3 + r5,1)/2 GSW

3,3 = (g3,2 + g4,1 + g4,3 + g5,2)/4 BSW
3,3 = b4,2

From Gx,y, Equation (38), a threshold Tx,y is computed as: Tx,y = k1 minGx,y + k2(maxGx,y − minGx,y),
where the values of k1, k2 are empirically chosen as 1.5 and 0.5, respectively. Next, the previously



7

computed color averages, from regions whose gradient estimate is less than the threshold, are averaged
to yield R

avg
x,y , G

avg
x,y , and B

avg
x,y . For example, at location (3, 3) if the gradient estimates less than T3,3 are

S3,3, W3,3, NE3,3, and SW3,3, then:

Ravg
3,3 = 1/4 · (RS

3,3 + RW
3,3 + RNE

3,3 + RSW
3,3 ) (39)

Gavg
3,3 = 1/4 · (GS

3,3 + GW
3,3 + GNE

3,3 + GSW
3,3 ) (40)

Bavg
3,3 = 1/4 · (BS

3,3 + BW
3,3 + BNE

3,3 + BSW
3,3 ). (41)

The final estimates of the missing color samples at location (3, 3) are then given by:

G(3, 3) = r3,3 + (Gavg
3,3 −Ravg

3,3 ) (42)

B(3, 3) = r3,3 + (Bavg
3,3 −Ravg

3,3 ). (43)

The missing color samples at the other pixel locations are estimated in a similar manner.

III. DETECTING CFA INTERPOLATION

At each pixel location of a CFA interpolated color image, a single color sample is captured by the
camera sensor, while the other two colors are estimated from neighboring samples. As a result, a subset
of samples, within a color channel, are correlated to their neighboring samples. Since the color filters in
a CFA are typically arranged in a periodic pattern, these correlations are periodic. Consider, for example,
the red channel, R(x, y), that has been sampled on a Bayer array, Fig. 1, then CFA interpolated using
bilinear interpolation, Section II-A. In this case, the red samples in the odd rows and even columns are
the average of their closest horizontal neighbors, the red samples in the even rows and odd columns are
the average of their closest vertical neighbors, and the red samples in the even rows and columns are
the average of their closest diagonal neighbors:

R(2x + 1, 2y) =
R(2x + 1, 2y− 1)

2
+

R(2x + 1, 2y + 1)

2
(44)

R(2x, 2y + 1) =
R(2x− 1, 2y + 1)

2
+

R(2x + 1, 2y + 1)

2
(45)

R(2x, 2y) =
R(2x− 1, 2y− 1)

4
+

R(2x− 1, 2y + 1)

4
+

R(2x + 1, 2y − 1)

4
+

R(2x + 1, 2y + 1)

4
. (46)

Note that in this simple case, the estimated samples are perfectly correlated to their neighbors. As such
a CFA interpolated image can be detected (in the absence of noise) by noticing, for example, that every
other sample in every other row or column is perfectly correlated to its neighbors. At the same time, the
non-interpolated samples are less likely to be correlated in precisely the same manner. Furthermore, it
is likely that tampering will destroy these correlations, or that the splicing together of two images from
different cameras will create inconsistent correlations across the composite image. As such, the presence
or lack of correlations produced by CFA interpolation can be used to authenticate an image, or expose
it as a forgery.

We begin by assuming a simple linear model for the periodic correlations introduced by CFA interpo-
lation. That is, each interpolated pixel is correlated to a weighted sum of pixels in a small neighborhood
centered about itself. While perhaps overly simplistic when compared to the highly non-linear nature of
most CFA interpolation algorithms, this simple model is both easy to parameterize and can reasonably
approximate each of the CFA interpolation algorithms presented in Section II. Note that most CFA
algorithms estimate a missing color sample from neighboring samples in all three color channels. For
simplicity, however, we ignore these inter-channel correlations and treat each color channel independently.

If the specific form of the correlations is known (i.e., the parameters of the linear model), then it would
be straightforward to determine which samples are correlated to their neighbors. On the other hand, if it
was known which samples are correlated to their neighbors, the specific form of the correlations could be
easily determined. In practice, of course, neither are known. To simultaneously estimate both we employ
the expectation/maximization (EM) algorithm [23], as described below.
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A. Expectation/Maximization Algorithm

Let f(x, y) denote a color channel (red, green, or blue) of a CFA interpolated image. We begin by
assuming that each sample in f(x, y) belongs to one of two models: (1) M1 if the sample is linearly
correlated to its neighbors, satisfying:

f(x, y) =
N
∑

u,v=−N

αu,vf(x + u, y + v) + n(x, y), (47)

where the model parameters are given by the linear coefficients ~α = {αu,v | − N ≤ u, v ≤ N} (N is an
integer and α0,0 = 0), and n(x, y) denotes independent and identically distributed samples drawn from a
Gaussian distribution with zero mean and unknown variance σ2; or (2) M2 if the sample is not correlated
to its neighbors, i.e., is generated by an “outlier process”.

The expectation-maximization algorithm (EM) is a two-step iterative algorithm: (1) in the E-step the
probability of each sample belonging to each model is estimated; and (2) in the M-step the specific form
of the correlations between samples is estimated. More specifically, in the E-step, the probability of each
sample of f(x, y) belonging to model M1 is estimated using Bayes’ rule:

Pr{f(x, y) ∈ M1 | f(x, y)} =
Pr{f(x, y) | f(x, y) ∈ M1}Pr{f(x, y) ∈ M1}

∑2
i=1 Pr{f(x, y) | f(x, y) ∈ Mi}Pr{f(x, y) ∈ Mi}

, (48)

where the prior probabilities Pr{f(x, y) ∈ M1} and Pr{f(x, y) ∈ M2} are assumed to be equal to 1/2. The
probability of observing a sample f(x, y) knowing it was generated from model M1 is given by:

Pr{f(x, y) | f(x, y) ∈ M1} =
1

σ
√

2π
exp



− 1

2σ2



f(x, y)−
N
∑

u,v=−N

αu,vf(x + u, y + v)





2

. (49)

The variance, σ2, of this Gaussian distribution is estimated in the M-step (see Appendix A). A uniform
distribution is assumed for the probability of observing a sample generated by the outlier model, M2,
i.e., Pr{f(x, y) | f(x, y) ∈ M2} is equal to the inverse of the range of possible values of f(x, y). Note that
the E-step requires an estimate of the coefficients ~α, which on the first iteration is chosen randomly. In
the M-step, a new estimate of ~α is computed using weighted least squares, by minimizing the following
quadratic error function:

E(~α) =
∑

x,y

w(x, y)



f(x, y)−
N
∑

u,v=−N

αu,vf(x + u, y + v)





2

, (50)

where the weights w(x, y) ≡ Pr{f(x, y) ∈ M1 | f(x, y)}, Equation (48). This error function is minimized
by computing the gradient with respect to ~α, setting this gradient equal to zero, and solving the result-
ing linear system of equations. Setting equal to zero the partial derivative with respect to one of the
coefficients, αs,t, yields:

∂E

∂αs,t
= 0 (51)

−2
∑

x,y

w(x, y)f(x + s, y + t)



f(x, y)−
N
∑

u,v=−N

αu,vf(x + u, y + v)



 = 0 (52)

∑

x,y

w(x, y)f(x + s, y + t)

N
∑

u,v=−N

αu,vf(x + u, y + v) =
∑

x,y

w(x, y)f(x + s, y + t)f(x, y). (53)

Re-ordering the terms on the left-hand side yields:
N
∑

u,v=−N

αu,v

(

∑

x,y

w(x, y)f(x + s, y + t)f(x + u, y + v)

)

=
∑

x,y

w(x, y)f(x + s, y + t)f(x, y) . (54)
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This process is repeated for each component, αs,t, of ~α, to yield a system of linear equations that can
be solved using standard techniques. The E-step and the M-step are iteratively executed until a stable
estimate of ~α is achieved. The final ~α has the property that it maximizes the likelihood of the observed
samples 3. See Appendix A for a detailed algorithm.

IV. RESULTS

We collected one hundred images, fifty of resolution 512× 512, and fifty of resolution 1024× 1024. Each
of these images were cropped from a smaller set of twenty 1600× 1200 images taken with a Nikon Coolpix
950 camera, and twenty 3034× 2024 images taken with a Nikon D100 camera. The Nikon Coolpix 950
employs a four-filter (yellow, cyan, magenta, green) CFA, and was set to store the images in uncompressed
TIFF format. The Nikon D100 camera employs a Bayer array, and was set to store the images in RAW
format. To avoid interference with the CFA interpolation of the cameras, each color channel of these
images was independently blurred with a 3× 3 binomial filter, and down-sampled by a factor of two in
each direction. These down-sampled color images, of size 256× 256 or 512× 512, were then re-sampled
onto a Bayer array, and CFA interpolated using the algorithms described in Section II.

Shown in Figs. 2 and 3 are the results of running the EM algorithm, Section III-A, on eight 256× 256
color images that were CFA interpolated using the algorithms presented in Section II. The parameters of
the EM algorithm were: N = 1, σ0 = 0.0075, and p0 = 1/256. Shown in the left column are the images, in
the middle column the estimated probability maps from the green channel (the red and blue channels
yield similar results), and in the right column the magnitude of the Fourier transforms of the probability
maps 4. Note that, although the periodic patterns in the probability maps are not visible at this reduced
scale, they are particularly salient in the Fourier domain in the form of localized peaks. Note also that
these peaks do not appear in the images that are not CFA interpolated (last row of Figs. 2 and 3).

While the probability maps obtained from the EM algorithm can be employed to detect if a color image
is the result of a CFA interpolation algorithm, the linear coefficients ~α returned by the EM algorithm can
be used to distinguish between different CFA interpolation techniques. Let ~α denote the 24-D vector of
linear coefficients (i.e., with a neighborhood size of N = 1 each of three color channels has 8 coefficients).
Using principal component analysis (PCA) [24], we computed the principal axes of 800, 24-D vectors
obtained from running the EM algorithm on 100 images CFA interpolated with each of eight algorithms
described in Section II (two versions of the median filter algorithm were used). Shown in Fig. 4 are the
projections onto the first two principal axes. Note how points corresponding to different CFA interpolation
algorithms tend to cluster. Even in this two-dimensional space, these clusters are, in some cases, clearly
separable.

While the different interpolation methods are not perfectly separable in this low-dimensional space,
they are pairwise separable in their original 24-D space. Specifically, a Linear Discriminant Analysis
(LDA) [25] on all pairs of interpolation algorithms yields nearly perfect separation. For each of twenty-
eight pairs of algorithms we trained a LDA classifier. Using 90% of the data for training and 10%
for testing, the average testing accuracy over 10 random training/testing splits and over all pairs of
algorithms was 97%. The minimum testing accuracy was 88% and was obtained when separating the 5× 5
median filter and the adaptive color plane algorithms. Since digital cameras typically employ different
CFA interpolation algorithms, this result could be used to determine if an image was not taken with a
specific digital camera.

3The EM algorithm has been proven to always converge to a stable estimate that is a local maximum of the log-likelihood of
the observed data [23].

4For display purposes, the probability maps were up-sampled by a factor of two before Fourier transforming. The periodic
patterns introduced by CFA interpolation have energy in the highest horizontal, vertical and diagonal frequencies, which
corresponds to localized frequency peaks adjacent to the image edges. Up-sampling by a factor of two shrinks the support
of a probability map’s spectrum, and shifts these peaks into the mid-frequencies, where they are easier to see. Also for display
purposes, the Fourier transforms of the probability maps were high-pass filtered, blurred, scaled to fill the range [0, 1], and
gamma corrected with an exponent of 2.0.
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image p |F(p)|

bilinear

bicubic

smooth hue

3× 3 median

no CFA
interpolation

Fig. 2. Shown in each row is an image interpolated with the specified algorithm, the probability map of the green channel
as output by the EM algorithm, and the magnitude of the Fourier transform of the probability map. Note the peaks in |F(p)|
corresponding to periodic correlations in the CFA interpolated images, and the lack of such peaks in the non-CFA interpolated
image (last row).
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image p |F(p)|

5× 5 median

gradient

adaptive
color
plane

variable
number of
gradients

no CFA
interpolation

Fig. 3. Shown in each row is an image interpolated with the specified algorithm, the probability map of the green channel
as output by the EM algorithm, and the magnitude of the Fourier transform of the probability map. Note the peaks in |F(p)|
corresponding to periodic correlations in the CFA interpolated images, and the lack of such peaks in the non-CFA interpolated
image (last row).
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bilinear            
bicubic             
smooth hue          
median (3 x 3)      
median (5 x 5)      
gradient based      
adaptive color plane
var. num. of grads. 

Fig. 4. The estimated interpolation coefficients from 800 CFA interpolated images, with eight different algorithms, are projected
onto a 2-D subspace. Even in this reduced space, the algorithms are, in some cases, clearly separable.

A. Detecting Localized Tampering

Since it is likely that tampering will destroy the periodicity of the CFA correlations, it may be possible
to detect and localize tampering in any portion of an image. To illustrate this, we begin with three
1024× 1024 images, taken with a Nikon D100 digital camera and saved in RAW format, Fig. 5. To
simulate tampering, each color channel of these images (initially interpolated using the adaptive color
plane technique) was blurred with a 3× 3 binomial filter and down-sampled by a factor of two in order
to destroy the CFA periodic correlations. The 512× 512 down-sampled images were then re-sampled on
a Bayer array and CFA interpolated. Next, composite images, 512× 512 pixels in size, were created by
splicing, in varying proportions (1/4, 1/2, and 3/4), a non-CFA interpolated image and the same CFA
interpolated image. Shown in Fig. 6 are the results of running EM on these composite images, where
each row corresponds to a different interpolation algorithm: from top to bottom, bicubic, Section II-A,
gradient-based, Section II-D, and variable number of gradients, Section II-F. Shown in the top row are,
the probability maps of the red channel. Notice that these probability maps clearly reveal the presence
of two distinct regions. Also shown in the top row are the magnitudes of the Fourier transforms of two
windows, one from the non-CFA interpolated portion (right), and one from the CFA interpolated portion
(left). 5 Notice the presence of localized frequency peaks in the CFA interpolated portion, and the lack
of such peaks in the non-CFA interpolated portion. Shown in the middle and bottom rows are similar
probability maps obtained from the green and blue channels of the other composite images, as well as
the magnitude of the Fourier transforms of windows from the non-CFA and CFA interpolated portions
of the maps.

Shown in Fig. 7 is a perceptually plausible forgery created using Adobe Photoshop (top left panel).
The tampering consisted of hiding the damage on the car hood using air-brushing, smudging, blurring,
and duplication. Also shown is the original image CFA interpolated using bicubic interpolation (top right
panel), the estimated probability map of the tampered image, and the magnitude of the Fourier transforms
of two windows one from a tampered portion (left), and one from an unadulterated portion (right). Note
that even though the periodic pattern is not visible in the probability map, localized frequency peaks
reveal its presence. Note also that the window from the tampered region does not contain frequency

5For display purposes, the probability maps were up-sampled by a factor of two, and their Fourier transforms high-pass
filtered, blurred, scaled to fill the range [0, 1], and gamma corrected with an exponent of 2.0.
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Fig. 5. Shown are three images taken with a Nikon D100 digital camera, see Fig. 6.

peaks.

B. Sensitivity and Robustness

From a digital forensics point of view it is important to quantify the robustness and sensitivity of our
detection technique. It is therefore necessary to devise a quantitative measure for the periodic correlations
introduced by CFA interpolation. This is achieved by comparing the estimated probability maps of
each color channel of a given image with synthetically generated probability maps. A synthetic map
is generated for each color channel as follows:

sr(x, y) =

{

0 S(x, y) = rx,y

1 otherwise
sg(x, y) =

{

0 S(x, y) = gx,y

1 otherwise
sb(x, y) =

{

0 S(x, y) = bx,y

1 otherwise,
(55)

where S(x, y) is defined as in Section II. Let pg(x, y) denote the probability map obtained from the green
channel of an image. A similarity measure between pg(x, y) and sg(x, y) is computed as follows:

1) The probability map pg(·) is Fourier transformed: Pg(ωx, ωy) = F(pg(x, y)).
2) The synthetic map sg(·) is Fourier transformed: Sg(ωx, ωy) = F(sg(x, y)).
3) The measure of similarity between pg(x, y) and sg(x, y) is then given by:

M(pg, sg) =
∑

ωx,ωy

|Pg(ωx, ωy)| · |Sg(ωx, ωy)|, (56)

where | · | denotes absolute value (note that this similarity measure is phase insensitive).
If the similarity measure, M(pg, sg), between pg(x, y) and sg(x, y) is above a specified threshold, then
a periodic pattern is assumed to be present in the probability map, and the channel is labeled as
CFA interpolated. Thresholds are empirically determined for each channel to yield a 0% false positive
rate, i.e., no color channel from the non-CFA interpolated images is classified as CFA interpolated. The
similarity measures between the probability and synthetic maps of the red and blue channels, M(pr, sr)
and M(pb, sb), are computed in a similar way.

To simulate tampering, each image is blurred and down-sampled in order to destroy the original CFA
interpolation correlations. These images are then interpolated with each of the algorithms described in
Section II. Given a three-channel color image, we first compute the similarity measures between the
probability maps of each color channel and the corresponding synthetic maps. The image is labeled as
CFA interpolated if at least one of the three similarities is greater than its specified threshold, or as
tampered if all three similarities are less than the thresholds. Using this approach, we have obtained,
with a 0% false positive rate the following classification accuracies averaged over 100 images: bilinear:
100%, bicubic: 100%, smooth hue: 100%, median (3× 3): 99% median (5× 5): 97%, gradient-based: 100%,
adaptive color plane: 97%, and variable number of gradients: 100%.

To be useful in a forensic setting it is important for our detection method to be robust to simple image
distortions. We have tested the sensitivity of our method to typical distortions that may conceal traces
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Fig. 6. Shown are the probability maps of composite images obtained by splicing together CFA interpolated images (left
portion of each image) and the same image without CFA interpolation (right portion). The original images are shown in Fig. 5.
Also shown are the magnitudes of the Fourier transforms of windows from the two regions. Note that windows from the CFA
interpolated regions (left) have localized peaks in the Fourier domain, while the windows from the “tampered” regions (right)
do not.
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Fig. 7. Shown are an original image (top right), a tampered image (top left), and the probability map of the tampered image’s
green channel (bottom left). Also shown is magnitude of the Fourier transform of two windows from the probability map
corresponding to a tampered and original portion of the image. Note the lack of peaks in the tampered region signifying the
absence of CFA interpolation.

of tampering: (1) JPEG compression, (2) additive white Gaussian noise, and (3) non-linear pointwise
gamma correction. Fifty images taken with the Nikon Coolpix 950 camera, were processed as described
above in order to obtain CFA and non-CFA interpolated images. Shown in Fig. 8 are the detection
accuracies (with 0% false positives) for different CFA interpolation algorithms as a function of the JPEG
compression quality. Note that these detection accuracies are close to 100% for quality factors greater
than 96 (out of 100), and that they decrease gracefully with decreasing quality factors. This decrease in
accuracy is expected, since the lossy JPEG compression introduces noise that destroys the correlations
introduced by CFA interpolation. The decrease in accuracy depends on the CFA interpolation algorithm,
e.g., the accuracy for smooth hue CFA interpolation is 56% at quality 70, while the accuracy for adaptive
color plane CFA interpolation drops to 6%.

Shown in Fig. 9 are the detection accuracies (with 0% false positives) for different CFA interpolation
algorithms as a function of the signal-to-noise ratio (SNR) of additive white Gaussian noise. In this case,
the accuracies drop relatively slowly as the SNR decreases. For example, very good detection rates are
achieved for even non-linear methods – with an SNR of 18db, 76% of the adaptive color plane, and 86%
of the variable number of gradients interpolated images are correctly detected.

We have also tested our detection method on CFA interpolated images gamma corrected with exponents
ranging from 0.5 to 1.5, in steps of 0.1. For all CFA interpolation techniques the accuracies (with 0% false
positives) were either 100% or 98% (i.e., one image out of fifty mis-classified).

In summary, we have shown that our detection method can reasonably distinguish between CFA and
non-CFA interpolated images even when the images are subjected to JPEG compression, additive noise,
or luminance non-linearities.
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Fig. 8. Detection accuracies (with 0% false positives) for different CFA interpolation algorithms as a function of JPEG compression
quality. Each data point corresponds to the average detection accuracy over fifty images.

C. Commercial Digital Cameras

In the previous sections the efficacy of our detection method was tested against CFA interpolated
images of our creation. Here we show the efficacy of our method on images acquired from three com-
mercially available digital cameras: Canon Powershot A80 (3.8 megapixels), Nikon D100 (6.1 megapixels),
and Kodak DCS 14N (14 megapixels). Each camera employs an RGB Bayer CFA. The Canon camera was
set to capture in maximum quality JPEG format, and the Nikon and Kodak cameras were set to capture
in uncompressed TIFF format. Nine images were captured, three images per camera.

Each of these images were divided into windows of sizes 256 × 256 or 512 × 512, with an overlap
of 50% along each direction. This led to, respectively, 192 and 35 windows for the Canon camera, 308
and 60 windows for the Nikon camera, and 748 and 160 windows for the Kodak camera. For each
window, the CFA detection algorithm was applied to each color channel to yield three probability maps.
The color channels were labeled as CFA, or non-CFA, interpolated if the similarity measures between
their probability maps and corresponding synthetic maps were above, or below, empirically determined
thresholds (the same thresholds, as those used in previous sections, were used). As before, a window was
labeled as authentic if at least one color channel was labeled as CFA interpolated, and as tampered, if all
three color channels were labeled as non-CFA interpolated. With a window size of 256×256, all windows
for all three cameras were correctly classified as authentic, with the exception of one of the Kodak images
in which 2 of the 748 windows were incorrectly classified as tampered. With a window size of 512× 512,
all windows for all three cameras were correctly classified as authentic. Shown in Fig. 10 are a sample
image from each of the three digital cameras. Also shown is the magnitude of the Fourier transform of
the estimated probability map (green channel) from 512×512 windows. Note the presence of the localized
peaks that correspond to CFA interpolation. Although difficult to see, the Canon images (captured in
JPEG format) contain small peaks along the horizontal and vertical axes. These peaks correspond to the
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Fig. 9. Detection accuracies (with 0% false positives) for different CFA interpolation algorithms as a function of signal-to-noise
ratio of additive white Gaussian noise. Each data point corresponds to the average detection accuracy over fifty images.

presence of JPEG blocking artifacts, but do not interfere with the detection of CFA interpolation.

V. DISCUSSION

Most digital cameras employ a single sensor in conjunction with a color filter array (CFA), where
the missing color samples are then interpolated from these recorded samples to obtain a three channel
color image. This interpolation introduces specific correlations which are likely to be destroyed when
tampering with an image. As such, the presence or lack of correlations produced by CFA interpolation
can be used to authenticate an image, or expose it as a forgery. We have shown, for eight different CFA
interpolation algorithms, that a simple linear model captures these correlations. We have also shown the
efficacy of this approach to detecting traces of digital tampering in lossless and lossy compressed images.

Our technique works in the absence of any digital watermark or signature, offering a complementary
approach to authenticating digital images. While statistical techniques such as that presented here pose
many challenges, we believe that their development will be important to contend with the cases when
watermarking technologies are not applicable.

As with any authentication scheme, our approach is vulnerable to counter-attack. A tampered image
could, for example, be re-sampled onto a CFA, and then re-interpolated. This attack, however, requires
knowledge of the camera’s CFA pattern and interpolation algorithm, and may be beyond the reaches of
a novice forger.

We are currently exploring several other techniques for detecting other forms of digital tampering. We
believe that many complementary techniques such as that presented here, and those that we [5], [8],
[9], [10] and others [6], [7], [4] develop, will be needed to reliably expose digital forgeries. There is little
doubt that even with the development of a suite of detection techniques, more sophisticated tampering
techniques will emerge, which in turn will lead to the development of more detection tools, and so on,
thus making the creation of forgeries increasingly more difficult.
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Fig. 10. Shown are three image as captured with commercially available Canon, Nikon, and Kodak digital cameras (top to
bottom, respectively). Also shown are the magnitudes of the Fourier transforms of the estimated probability map of 512 × 512
windows (green channel). The peaks in the Fourier transform correspond to the presence of CFA interpolation in the image.
These patterns are present in all regions of the image.
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Appendix A: EM Algorithm

/* Initialize */
choose {α(0)

u,v} randomly
choose N and σ0

set p0 as 1 over the size of the range of possible values of f(x, y)

n = 0
repeat

/* expectation step */
for each sample location (x, y)

r(x, y) =
∣

∣

∣f(x, y)−∑N
u,v=−N α

(n)
u,vf(x + u, y + v)

∣

∣

∣ /* residual error */
end
for each sample location (x, y)

P (x, y) = 1
σn

√
2π

exp
[

−r2(x, y)/2σ2
n

]

/* conditional probability */

w(x, y) = P (x,y)
P (x,y)+p0

/* posterior probability */
end

/* maximization step */
compute {α(n+1)

u,v } as the solution of the linear system in Eq. (??)

σn+1 =
( �

x,y
w(x,y)r2(x,y)

�
x,y

w(x,y)

)1/2
/* new variance estimate */

n = n + 1
until (

∑

u,v

∣

∣

∣α
(n)
u,v − α

(n−1)
u,v

∣

∣

∣ < ε ) /* stopping condition */
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