
ACM SIGGRAPH@UIUCACM SIGGRAPH@UIUC
Fast Image ConvolutionsFast Image Convolutions

by: Wojciech Jarosz

Image ConvolutionImage Convolution

Traditionally, image convolution is performed by what is
called the sliding window approach.
– For each pixel in the image, a local neighborhood of pixels is

multiplied by a weighting kernel, and then added up to get
the value of the new pixel.

In the most general case, the convolution of a 2D image is
O(m2*n2), where m is the width and height of the image,
and n is the width and height of the convolution kernel.
– This is quadratic in terms of image dimension and quadratic

in terms of kernel dimension!

Naïve ImplementationNaïve Implementation
for (each pixel location p, in the old image)
{

accumulation = 0
weightsum = 0
for (each pixel k, in the neighborhood of p)
{

accumulation += k*weight(k)
weightsum += weight(k)

}

p, in new image = accumulation/weightsum
}

The Weighting KernelThe Weighting Kernel

The weighting kernel is what will determine the properties
of the convolution.
For a simple box blur, all the weights are 1.
For a Gaussian blur, the weights fall off according to a
normal distribution away from the center of the kernel.
A simple sharpen filter would have negative weights at
nearby pixels, but a positive weight at the center.

Speeding Up a Box BlurSpeeding Up a Box Blur

Instead doing a 2D box blur on an image, you can first do a
horizontal motion blur, and then a vertical motion blur.
This actually create an image that is equivalent to a box
blurred image! Try it!
This speeds it up from O(m2*n2) to O(m2*2n)!
Quite a good speed-up, but we can still do better!

Speeding Up a Box Blur Speeding Up a Box Blur Part 2Part 2

Since we are now just doing 2 motion blurs, lets just
consider motion blur:
The accumulation of the neighborhood of pixel i,
shares a lot of pixels in common with the
accumulation for pixel i+1.
In fact:
– accumulation(i+1) = accumulation(i) –

leftmost pixel of neighborhood(i) + leftmost
pixel of neighborhood(i+1)

This means we need to compute the whole kernel for
only the first pixel in each row. Successive pixel blur
values can be attained with just an add and a subtract
to the previous blur value!
Now its O(m2), only dependent on image resolution!
Independent of blur size!

pixel ii

neighborhood(i)

neighborhood(i+1)(i+1)

pixel i+1

What’s next?What’s next?

We now have a box blur that is independent of blur width.
What else could we ask for?
Well, the box filter is not a very good blur kernel, we
would like to use some better convolution kernels.
How can we apply these concepts to a Gaussian blur kernel
for instance?
In order to answer this, lets first review some of the math
behind convolutions …

The 1D caseThe 1D case
Lets look at convolution in 1D for simplicity.
The sliding window is an intuitive way to visualize
convolution.
Convolution of two square waves (box filters) yields a
triangle wave (tent filter, piecewise linear).

The 1D caseThe 1D case

Convolution of a box filter (piecewise constant) with a tent
filter (piecewise linear) yields a piecewise quadratic filter.

Taking it FurtherTaking it Further

The pattern continues. Box filtering the piecewise
quadratic curve from the last slide will yield a
piecewise cubic (Bernstein polynomials, NURBS).
Each time we make the curve more “smooth.”
Taking this to the limit will produce a Gaussian
distribution.

The ImplicationsThe Implications

How does this relate to our 2D image blurs?
We can put our fast box blur function to use in
order to approximate a Gaussian blur!
Applying our box filter two times will produce a
tent filter, three times a piecewise quadratic, four
times…
We can therefore create a good approximation to a
Gaussian blur that is still independent of radius!
Its only dependent on the image size and the
number of iterations we apply the box blur.

2D Filters2D Filters

Motion BlurMotion Blur Box BlurBox Blur Tent BlurTent Blur
(box 2 twice)(box 2 twice)

Piecewise Piecewise hexichexic??
(box blur 6 times)

GaussianGaussian BlurBlurPiecewise Quadratic Piecewise Quadratic
(box blur 3 times)(box blur 3 times) (box blur 6 times)

3D Visualization of 2D Filters 3D Visualization of 2D Filters

Piecewise Constant (Box) Filter Piecewise Linear (Tent) Filter

Piecewise Quadratic
Filter

Gaussian Filter

Another WayAnother Way
Although it is still constant in time relative to the radius, to
create a very smooth Gaussian approximation, many
iterations are needed with this approach. In situations that a
very nice blur is required, another method might be
preferable.
Our second speedup doesn’t seem possible with anything
but a box filter. The box filter was unique in that all its
weights were equal, and that allowed us to just add a value
and subtract a value to the accumulation for each pixel
location.
However, it turns out that our first speedup, doing two
motion blurs, will work with other kernels as well!

Other KernelsOther Kernels
A problem arises, however, with the axis aligned nature of
doing just two motion blurs. Using a tent filter for each
motion blur will not create a nice radial tent filter (cone
filter), but a normal, axis aligned tent. The same goes for
any other kernel, it will have distinct axis aligned
artifacts…
With the exception of a Gaussian! The Gaussian has the
unique quality of being the same whether it is defined
along the radius, or along the X and Y axes separate.
This means that if we do two Gaussian weighted motion
blurs, this will create a radially symmetrical Gaussian
kernel!

Wrap UpWrap Up

Following these simple tips you can create image
convolution routines that are orders of magnitude faster
than the naïve implementations.
Another thing to keep in mind is to pre-compute expensive
kernel.
– If you create a fast Gaussian blur function using two

successive motion blurs, but you evaluate the Gaussian
function every time you need to figure out a weight, you will
see very little speedup.

– Pre-compute the kernel! With our method, a radius 10 blur,
would only require pre-computing/storing 11 values for the
weights, since we are doing it in 1D each time.

	ACM SIGGRAPH@UIUC
	Image Convolution
	Naïve Implementation
	The Weighting Kernel
	Speeding Up a Box Blur
	Speeding Up a Box Blur Part 2
	What’s next?
	The 1D case
	The 1D case
	Taking it Further
	The Implications
	2D Filters
	3D Visualization of 2D Filters
	Another Way
	Other Kernels
	Wrap Up

