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Status of this Document

Thisisarevision of the PNG 1.0 specification, which has been published as RFC-2083 and as a W3C Rec-
ommendation. The revision has been released by the PNG Devel opment Group but has not been approved
by any standards body.

The PNG specification is on a standards track under the purview of ISO/IEC JTC 1 SC 24 and is expected
to bereleased eventually as | SO/IEC Internationa Standard 15948. It isthe intent of the standards bodiesto
maintain backward compatibility with this specification. Implementors should periodically check the PNG
online resources (see Online Resources, Chapter 16) for the current status of PNG documentation.

Abstract

This document describes PNG (Portable Network Graphics), an extensible file format for the lossless,
portable, well-compressed storage of raster images. PNG provides a patent-free replacement for GIF and
can a so replace many common uses of TIFF. Indexed-color, grayscale, and truecol or images are supported,
plus an optional aphachannel. Sample depths range from 1 to 16 bits.

PNG is designed to work well in online viewing applications, such as the World Wide Web, so it is fully
streamable with a progressive display option. PNG isrobust, providing both full file integrity checking and
simple detection of common transmission errors. Also, PNG can store gamma and chromaticity data for
improved color matching on heterogeneous platforms.

This specification defines the Internet Media Type “image/png”.
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I ntroduction

The Portable Network Graphics (PNG) format providesaportabl e, legally unencumbered, well-compressed,
well-specified standard for |ossless bitmapped image files.

Althoughtheinitial motivationfor devel oping PNG wasto replace GIF (CompuServe' s GraphicsInterchange
Format), the design provides some useful new features not availablein GIF, with minimal cost to devel opers.

GIF features retained in PNG include:

Indexed-color images of up to 256 colors.

Streamability: files can be read and written serially, thus allowing the file format to be used as acom-
muni cations protocol for on-the-fly generation and display of images.

Progressivedisplay: asuitably prepared imagefile can be displayed asit is received over acommuni-
cationslink, yielding alow-resol utionimage very quickly followed by gradual improvement of detail.

Transparency: portions of the image can be marked as transparent, creating the effect of a non-
rectangular image.

Ancillary information: textual comments and other data can be stored within the imagefile.
Complete hardware and platform independence.

Effective, 100% |ossless compression.

Important new features of PNG, not availablein GIF, include:

Truecolor images of up to 48 bits per pixel.
Grayscaleimages of up to 16 bits per pixel.
Full aphachannel (general transparency masks).

Image gamma information, which supports automatic display of images with correct brightness/
contrast regardless of the machines used to originate and display the image.

Reliable, straightforward detection of file corruption.

Faster initial presentation in progressive display mode.

PNG is designed to be:

Simple and portable: developers should be able to implement PNG easily.

Legally unencumbered: to the best knowledge of the PNG authors, no al gorithmsunder legal challenge
are used. (Some considerable effort has been spent to verify this.)

WEell compressed: both indexed-color and truecolor images are compressed as effectively asin any
other widely used losslessformat, and in most cases more effectively.
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e Interchangeable: any standard-conforming PNG decoder must read all conforming PNG files.

e Flexible: the format allows for future extensions and private add-ons, without compromising inter-
changeability of basic PNG.

¢ Robust: the design supportsfull fileintegrity checking as well as simple, quick detection of common
transmission errors.

The main part of this specification gives the definition of the file format and recommendations for encoder
and decoder behavior. An appendix givesthe rationale for many design decisions. Although therationaleis
not part of theformal specification, reading it can hel pimplementorsunderstand thedesign. Cross-references
in the main text point to relevant parts of the rationale. Additiona appendixes, also not part of the formal
specification, provide tutorials on gamma and color theory as well as other supporting material.

The words “must”, “required”, “should”, “recommended”, “may”, and “optiona” in this document are to
be interpreted as described in [RFC-2119], which is consistent with their plain English meanings. The word
“can” carries the same force as“may”.

See Rationale: Why a new file format? (Section 12.1), Why these features? (Section 12.2), Why not these
features? (Section 12.3), Why not use format X? (Section 12.4).

Pronunciation

PNG is pronounced “ping”.

2 Data Representation

This chapter discusses basic datarepresentations used in PNG files, aswell as the expected representation of
the image data.

2.1 Integersand byteorder

All integersthat require more than one byte must be in network byte order: the most significant byte comes
first, then the less significant bytesin descending order of significance (MSB L SB for two-byte integers, B3
B2 B1 BO for four-byte integers). The highest bit (value 128) of a byte is numbered bit 7; the lowest bit
(value 1) is numbered bit 0. Vaues are unsigned unless otherwise noted. Values explicitly noted as sighed
are represented in two's complement notation.

Unless otherwise stated, four-byte unsigned integers are limited to the range 0 to 23! — 1 to accommodate
languagesthat have difficulty with unsigned four-bytevaues. Similarly, four-byte signedintegersarelimited
to therange — (23! — 1) to 23! — 1 to accommodate languages that have difficulty with the value —231.

See Rationale: Byte order (Section 12.5).
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2.2 Color values

Colors can be represented by either grayscale or RGB (red, green, blue) sample data. Graysca e data repre-
sentsluminance; RGB datarepresents calibrated color information (if thecHRM chunk is present) or uncal-
ibrated device-dependent color (if cHRM is absent). All color values range from zero (representing black)

to most intense at the maximum value for the sample depth. Note that the maximum value at a given sample
depthis gsampledepth _ | ot 9sampledepth

Sample values are not necessarily proportional to light intensity; the gAMA chunk specifies the relation-
ship between samplevaues and display output intensity, and viewers are strongly encouraged to compensate
properly. See Gamma correction (Section 2.7).

Source data with a precision not directly supported in PNG (for example, 5 bit/sample truecolor) must be
scaled up to the next higher supported bit depth. Thisscalingisreversiblewith no lossof data, and it reduces
the number of cases that decoders have to cope with. See Recommendations for Encoders: Sample depth
scaling (Section 9.1) and Recommendations for Decoders: Sample depth rescaling (Section 10.4).

2.3 Image layout

Conceptually, a PNG image isarectangular pixel array, with pixels appearing | eft-to-right within each scan-
line, and scanlines appearing top-to-bottom. (For progressive display purposes, the data may actually be
transmitted in adifferent order; see Interlaced data order, Section 2.6.) The size of each pixel is determined
by the bit depth, which is the number of bits per sample in theimage data.

Three types of pixel are supported:

¢ Anindexed-color pixel isrepresented by a single sample that is an index into a supplied paette. The
image bit depth determines the maximum number of palette entries, but not the color precision within
the palette.

e A grayscale pixel isrepresented by a single samplethat is a grayscale level, where zero is black and
the largest value for the bit depth is white.

e A truecolor pixel is represented by three samples: red (zero = black, max = red) appears first, then
green (zero = black, max = green), then blue (zero = black, max = blue). The bit depth specifies the
size of each sample, not the total pixel size.

Optionally, grayscale and truecolor pixels can a so include an alpha sampl e, as described in the next section.

Pixelsare aways packed into scanlineswith no wasted bits between pixels. Pixelssmaller than abyte never
cross byte boundaries; they are packed into bytes with the leftmost pixel in the high-order bits of abyte, the
rightmost in the low-order bits. Permitted bit depths and pixel types are restricted so that in all cases the
packing is simple and efficient.

PNG permits multi-sample pixels only with 8- and 16-bit samples, so multiple samples of asinglepixel are
never packed into one byte. All 16-bit samples are stored in network byte order (MSB first).
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Scanlines aways begin on byte boundaries. When pixels have fewer than 8 bits and the scanline width is
not evenly divisible by the number of pixels per byte, the low-order bitsin the last byte of each scanline are
wasted. The contents of these wasted bits are unspecified.

An additional “filter-type” byte isadded to the beginning of every scanline (see Filtering, Section 2.5). The
filter-type byte is not considered part of the image data, but it isincluded in the datastream sent to the com-
pression step.

24 Alphachanne

An apha channel, representing transparency information on a per-pixel basis, can be included in grayscale
and truecolor PNG images.

An apha value of zero represents full transparency, and a value of 2Pitderth _ 1 represents a fully opaque
pixel. Intermediate valuesindicatepartially transparent pixel sthat can be combined withabackgroundimage
toyield a composite image. (Thus, alphais redly the degree of opacity of the pixel. But most people refer
to alphaas providing transparency information, not opacity information, and we continue that custom here.)

Alphachannels can beincluded withimagesthat have either 8 or 16 bitsper sample, but not withimagesthat
have fewer than 8 bits per sample. Alphasamplesare represented with the same bit depth used for theimage
samples. The aphasamplefor each pixel is stored immediately following the grayscale or RGB samples of
the pixel.

Thecolor valuesstored for apixel are not affected by the al phavalue assignedto thepixel. Thisruleissome-
times called “unassociated” or “non-premultiplied” apha. (Another common techniqueis to store sample
values premultiplied by the apha fraction; in effect, such an image is already composited against a black
background. PNG does not use premultiplied apha.)

Transparency control is also possible without the storage cost of afull alpha channel. In an indexed-color
image, an aphavalue can be defined for each palette entry. In grayscal e and truecol or images, asingle pixel
value can beidentified as being “transparent”. These techniquesare controlled by the tRNS ancillary chunk

type.
If no aphachannel nor tRNS chunk is present, al pixelsin theimage are to be treated as fully opague.
Viewers can support transparency control partially, or not at all.

See Rationale: Non-premultiplied al pha(Section 12.8), Recommendationsfor Encoders: Alphachannel cre-
ation (Section 9.4), and Recommendations for Decoders: Alphachannel processing (Section 10.8).

25 Filtering

PNG alowsthe image datato be filtered beforeit is compressed. Filtering can improve the compressibility
of thedata. Thefilter step itself does not reduce the size of the data. All PNG filters are strictly lossless.
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PNG defines severa different filter algorithms, including “None” which indicates no filtering. The filter a-
gorithm is specified for each scanline by a filter-type byte that precedes the filtered scanline in the precom-
pression datastream. An intelligent encoder can switch filters from one scanlineto the next. The method for
choosing which filter to employ is up to the encoder.

See Filter Algorithms (Chapter 6) and Rationale: Filtering (Section 12.9).

2.6 Interlaced data order

A PNG image can be stored ininterlaced order to allow progressivedisplay. The purpose of thisfeatureisto
allow imagesto “fadein” when they are being displayed on-the-fly. Interlacing slightly expandsthefile size
on average, but it givesthe user a meaningful display much more rapidly. Note that decoders are required to
be able to read interlaced images, whether or not they actually perform progressive display.

With interlace method O, pixelsare stored sequentialy from left to right, and scanlines sequentially from top
to bottom (no interlacing).

Interlace method 1, known as Adam?7 after its author, Adam M. Costello, consists of seven distinct passes
over the image. Each pass transmits a subset of the pixelsin the image. The pass in which each pixd is
transmitted is defined by replicating the following 8-by-8 pattern over the entire image, starting at the upper
left corner:

NUNWNON R
N~NoNoNoO~N®
~NO~NA~NOND
N~NoNoNo~N®
NUNWNONN
N~NoNoNoNo®
NN~~~ D
N~NoNoNo~No®

Within each pass, the selected pixels are transmitted left to right within a scanline, and selected scanlines
sequentially from top to bottom. For example, pass 2 containspixels4, 12, 20, etc. of scanlinesO, 8, 16, etc.
(numbering from 0,0 at the upper |eft corner). Thelast pass contains the entirety of scanlines 1, 3, 5, etc.

Thedatawithin each passislaid out asthough it wereacompleteimage of the appropriatedimensions.
For example, if the completeimageis 16 by 16 pixels, then pass 3 will contain two scanlines, each containing
four pixels. When pixels have fewer than 8 bits, each such scanline is padded as needed to fill an integral
number of bytes (see Image layout, Section 2.3). Filtering is done on this reduced image in the usual way,
and afilter-typebyteistransmitted before each of its scanlines(see Filter Algorithms, Chapter 6). Noticethat
the transmission order is defined so that al the scanlines transmitted in a pass will have the same number of
pixels; thisisnecessary for proper application of some of thefilters.

Caution: If theimage containsfewer than five columns or fewer than five rows, some passeswill be entirely
empty. Encoders and decoders must handle this case correctly. In particular, filter-type bytes are associated
only with nonempty scanlines; no filter-type bytes are present in an empty pass.
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See Rationale; Interlacing (Section 12.6) and Recommendations for Decoders: Progressive display (Section
10.9).

2.7 Gamma correction

PNG images can specify, viathe gAMA chunk, the power function relating the desired display output with
theimage samples. Display programsare strongly encouraged to use thisinformation, plusinformation about
thedisplay systemthey areusing, to present theimageto theviewer inaway that reproduceswhat theimage's
original author saw as closely as possible. See Gamma Tutoria (Chapter 13) if you aren’t already familiar
with gamma issues.

Gammacorrectionisnot appliedto thea phachannel, if any. Alphasamplesawaysrepresent alinear fraction
of full opacity.

For high-precision applications, the exact chromaticity of the RGB datain a PNG image can be specified via
the cHRM chunk, allowing more accurate color matching than gamma correction alone will provide. If the
RGB data conforms to the SRGB specification [SRGB], this can beindicated with the SRGB chunk, enabling
even more accurate reproduction. Alternatively, theiCCP chunk can be used to embed an ICC profile [ICC]

containing detailed color space information. See Color Tutorial (Chapter 14) if you aren’t already familiar
with color representation issues.

See Rationale: Why gamma? (Section 12.7), Recommendations for Encoders: Encoder gamma handling
(Section 9.2), and Recommendations for Decoders: Decoder gamma handling (Section 10.5).

2.8 Text strings

A PNG file can store text associated with the image, such as an image description or copyright notice. Key-
words are used to indicate what each text string represents.

ISO/IEC 8859-1 (Latin-1) isthe character set recommended for usein thetext strings appearing in tEXt and
ZT Xt chunks[ISO/IEC-8859-1]. Itisasuperset of 7-bit ASCII. If itisnecessary to convey characters outside
of the Latin-1 set, theiTXt chunk should be used instead.

Character codes not defined in Latin-1 should not be used in tEXt and zT Xt chunks, because they have no
platform-independent meaning. |f a non-Latin-1 code does appear in a PNG text string, its interpretation
will vary across platforms and decoders. Some systems might not even be able to display al the characters
in Latin-1, but most modern systems can.

Provision is also made for the storage of compressed text.
See Rationale: Text strings (Section 12.10).
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3 FileStructure

A PNG file consists of a PNG signature followed by a series of chunks. This chapter defines the signature
and the basic properties of chunks. Individual chunk types are discussed in the next chapter.

3.1 PNG filesignature

Thefirst eight bytes of a PNG file always contain the following (decimal) values:
137 80 78 71 13 10 26 10

This signature indicates that the remainder of the file containsa single PNG image, consisting of a series of
chunks beginning with an IHDR chunk and ending with an IEND chunk.

See Rationale: PNG file signature (Section 12.12).

3.2 Chunk layout

Each chunk consistsof four parts:

Length
A 4-byte unsigned integer giving the number of bytes in the chunk’s data field. The length counts
only the data field, not itself, the chunk type code, or the CRC. Zero isavaid length. Although
encoders and decoders should treat the length as unsigned, its value must not exceed 23! — 1 bytes.

Chunk Type
A 4-byte chunk type code. For convenience in description and in examining PNG files, type
codes are restricted to consist of uppercase and lowercase ASCII letters (A—Z and a—z, or 65-90
and 97-122 decimal). However, encoders and decoders must treat the codes as fixed binary values,
not character strings. For example, it would not be correct to represent the type code IDAT by the
EBCDIC equivalents of those letters. Additional naming conventions for chunk types are discussed
in the next section.

Chunk Data
The data bytes appropriate to the chunk type, if any. Thisfield can be of zero length.

CRC
A 4-byte CRC (Cyclic Redundancy Check) calculated on the preceding bytes in the chunk, in-
cluding the chunk type code and chunk data fields, but not including the length field. The CRC is
always present, even for chunks containing no data. See CRC agorithm (Section 3.4).

The chunk data length can be any number of bytes up to the maximum,; therefore, implementors cannot as-
sume that chunks are aligned on any boundaries|arger than bytes.
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Chunkscan appear inany order, subject totherestrictionsplaced on each chunk type. (Onenotablerestriction
is that IHDR must appear first and IEND must appear last; thus the IEND chunk serves as an end-of-file
marker.) Multiple chunks of the same type can appear, but only if specifically permitted for that type.

See Rationale: Chunk layout (Section 12.13).

3.3 Chunk naming conventions

Chunk type codes are assigned so that adecoder can determine some properties of a chunk even when it does
not recognize the type code. These rules are intended to allow safe, flexible extension of the PNG format,
by alowing a decoder to decide what to do when it encounters an unknown chunk. The naming rules are not
normally of interest when the decoder does recognize the chunk’s type.

Four bits of the type code, namely bit 5 (value 32) of each byte, are used to convey chunk properties. This
choice means that a human can read off the assigned properties according to whether each |etter of the type
codeisuppercase (bit 5is0) or lowercase (bit 5is1). However, decoders should test the properties of an un-
known chunk by numerically testing the specified bits; testing whether a character is uppercase or lowercase
isinefficient, and even incorrect if alocale-specific case definition is used.

It is worth noting that the property bits are an inherent part of the chunk name, and hence are fixed for any
chunk type. Thus, BLOB and bL Ob would be unrelated chunk type codes, not the same chunk with different
properties. Decoders must recognize type codes by a simple four-byte literal comparison; it is incorrect to
perform case conversion on type codes.

The semantics of the property bits are:

Ancillary bit: bit 5 of first byte
0 (uppercase) = critical, 1 (lowercase) = ancillary.

Chunksthat arenot strictly necessary in order to meaningfully display the contents of thefileareknown
as“ancillary” chunks. A decoder encountering an unknown chunk in which the ancillary bitis 1 can
safely ignore the chunk and proceed to display the image. Thetime chunk (tIME) is an example of an
ancillary chunk.

Chunks that are necessary for successful display of thefile's contents are called “critical” chunks. A
decoder encountering an unknown chunk inwhich theancillary bitisO must indicateto the user that the
image containsinformation it cannot safely interpret. The image header chunk (IHDR) isan example
of acritical chunk.

Privatebit: bit 5 of second byte
0 (uppercase) = public, 1 (lowercase) = private.

A public chunk isonethat is part of the PNG specification or isregistered in the list of PNG special-
purpose public chunk types. Applications can aso define private (unregistered) chunksfor their own
purposes. The names of private chunks must have alowercase second | etter, while public chunkswill
always be assigned names with uppercase second letters. Note that decoders do not need to test the
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private-chunk property bit, since it has no functiona significance; it is simply an administrative con-
venience to ensure that public and private chunk names will not conflict. See Additional chunk types
(Section 4.4), and Recommendations for Encoders: Use of private chunks (Section 9.8).

Reserved bit: bit 5 of third byte
Must be 0 (uppercase) in files conforming to this version of PNG.

The significance of the case of the third letter of the chunk name is reserved for possible future ex-
pansion. At the present time all chunk names must have uppercase third letters. (Decoders should
not complain about alowercase third | etter, however, as some future version of the PNG specification
could define a meaning for this bit. It is sufficient to treat a chunk with a lowercase third letter in the
same way as any other unknown chunk type.)

Safe-to-copy bit: bit 5 of fourth byte
0 (uppercase) = unsafe to copy, 1 (lowercase) = safe to copy.

This property bit is not of interest to pure decoders, but it is needed by PNG editors (programs that
modify PNG files). Thishbit defines the proper handling of unrecognized chunksin afile that is being
modified.

If a chunk’s safe-to-copy bit is 1, the chunk may be copied to a modified PNG file whether or not the
software recognizes the chunk type, and regardless of the extent of the file modifications.

If a chunk’s safe-to-copy bit is 0, it indicates that the chunk depends on the image data. If the pro-
gram has made any changes to critical chunks, including addition, modification, deletion, or reorder-
ing of critical chunks, then unrecognized unsafe chunks must not be copied to the output PNG file.
(Of coursg, if the program does recogni ze the chunk, it can choose to output an appropriately modified
version.)

A PNG editorisalwaysallowedto copy al unrecognized chunksif it hasonly added, deleted, modified,
or reordered ancillary chunks. Thisimpliesthat it isnot permissiblefor ancillary chunksto depend on
other ancillary chunks.

PNG editorsthat do not recognize acritical chunk must report an error and refuse to processthat PNG
fileat al. The safe/unsafe mechanismisintended for use with ancillary chunks. The safe-to-copy bit
will awaysbe O for critical chunks.

Rulesfor PNG editors are discussed further in Chunk Ordering Rules (Chapter 7).
For example, the hypothetical chunk type name bL Ob has the property bits:

bLOb <-- 32 bit chunk type code represented in text form
11

||| +- Safe-to-copy bit is 1 (lowercase letter; bit 5is 1)
|| +-- Reserved bit is O (uppercase letter; bit 5is 0)
| +--- Private bit is O (uppercase letter; bit 5 is 0)
+---- Ancillary bit is 1 (l owercase letter; bit 5is 1)

Therefore, this name represents an ancillary, public, safe-to-copy chunk.
See Rationale: Chunk naming conventions (Section 12.14).
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3.4 CRC algorithm

Chunk CRCs are calculated using standard CRC methods with pre and post conditioning, as defined by 1SO
3309 [1SO-3309] or ITU-T V.42 [ITU-T-V42]. The CRC polynomia employed is

X32—|—X26—|—X23—|—X22—|—X16—|—X12—|—X11—|—X10—|—X8+X7—|—X5—|—X4—|—X2—|—X—|—1

The 32-bit CRC register isinitialized to al 1's, and then the data from each byteis processed from the least
significant bit (1) to the most significant bit (128). After all the data bytes are processed, the CRC register
isinverted (its ones complement is taken). Thisvaueistransmitted (stored in the file) MSB first. For the
purpose of separating into bytes and ordering, the least significant bit of the 32-bit CRC is defined to be the
coefficient of thex3! term.

Practical calculation of the CRC always employs a precal cul ated table to greatly accel erate the computation.
See Sample CRC Code (Chapter 15).

4 Chunk Specifications

This chapter defines the standard types of PNG chunks.

4.1 Critical chunks

All implementations must understand and successfully render the standard critical chunks. A vaid PNG
image must contain an IHDR chunk, one or more IDAT chunks, and an IEND chunk.

411 |HDR Image header

The IHDR chunk must appear FIRST. It contains:

W dt h: 4 bytes
Hei ght : 4 bytes
Bit depth: 1 byte
Col or type: 1 byte
Conpression nethod: 1 byte
Filter nethod: 1 byte
Interlace nethod: 1 byte

Width and height givetheimage dimensionsin pixels. They are 4-byteintegers. Zeroisaninvalidvaue. The
maximum for each is 23! — 1 in order to accommodate languages that have difficulty with unsigned 4-byte
values.

Bit depth is a single-byte integer giving the number of bits per sample or per palette index (not per pixel).
Vaidvauesare 1, 2, 4, 8, and 16, although not al values are alowed for all color types.
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Color typeisasingle-byteinteger that describestheinterpretation of theimage data. Color type codesrepre-
sent sums of the following values: 1 (palette used), 2 (color used), and 4 (a phachannel used). Valid values
ae0, 2, 3,4, and 6.

Bit depth restrictionsfor each color type are imposed to simplify implementations and to prohibit combina-
tions that do not compress well. Decoders must support all valid combinations of bit depth and color type.
The alowed combinations are:

Col or Al | owed Interpretation
Type Bit Depths

0 1,2,4,8,16 Each pixel is a grayscale sanple.
2 8, 16 Each pixel is an R GB triple.
3 1,2,4,8 Each pixel is a palette index;

a PLTE chunk must appear.

4 8,16 Each pixel is a grayscal e sanpl e,
foll owed by an al pha sanpl e.

6 8,16 Each pixel is an RGB triple,
foll owed by an al pha sanpl e.

The sample depth is the same as the bit depth except in the case of color type 3, in which the sample depth
isaways 8 hits.

Compression method is a single-byteinteger that indicates the method used to compress the image data. At
present, only compression method O (deflate/inflate compression with a sliding window of at most 32768
bytes) isdefined. All standard PNG images must be compressed with this scheme. The compression method
field is provided for possible future expansion or proprietary variants. Decoders must check this byte and
report an error if it holdsan unrecognized code. See Deflate/Inflate Compression (Chapter 5) for details.

Filter method is a single-byteinteger that indicates the preprocessing method applied to the image data be-
fore compression. At present, only filter method O (adaptive filtering with five basic filter types) is defined.
Aswith the compression method field, decoders must check thisbyte and report an error if it holdsan unrec-
ognized code. See Filter Algorithms (Chapter 6) for details.

Interlace method is asingle-byteinteger that indicates the transmission order of theimage data. Two values
are currently defined: 0 (no interlace) or 1 (Adam? interlace). See Interlaced data order (Section 2.6) for
details.

412 PLTE Palette

The PLTE chunk containsfrom 1 to 256 pal ette entries, each a three-byte series of the form:
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Red: 1 byte (0 = black, 255 = red)
Green: 1 byte (0 = black, 255 = green)
Blue: 1 byte (0 = black, 255 = bl ue)

The number of entriesis determined from the chunk length. A chunk length not divisibleby 3isan error.

Thischunk must appear for color type 3, and can appear for color types 2 and 6; it must not appear for color
types 0 and 4. If this chunk does appear, it must precede thefirst IDAT chunk. There must not be more than
one PLTE chunk.

For color type 3 (indexed color), the PLTE chunk isrequired. Thefirst entry in PLTE isreferenced by pixel
value 0, the second by pixel value 1, etc. The number of palette entries must not exceed the range that can
be represented in the image bit depth (for example, 2* = 16 for abit depth of 4). It is permissible to have
fewer entries than the bit depth would allow. In that case, any out-of-range pixel value found in the image
dataisan error.

For color types2 and 6 (truecol or and truecol or with a pha), the PLTE chunk isoptional. If present, it provides
a suggested set of from 1 to 256 colors to which the truecol or image can be quantized if the viewer cannot
display truecolor directly. If neither PLTE nor sPLT is present, such aviewer will need to select colorsonits
own, but it is often preferable for thisto be done once by the encoder. (See Recommendations for Encoders:
Suggested palettes, Section 9.5.)

Note that the palette uses 8 bits (1 byte) per sample regardless of the image bit depth specification. In par-
ticular, the paletteis 8 bits deep even when it is a suggested quantization of a 16-bit truecol or image.

Thereis no requirement that the pa ette entries all be used by the image, nor that they all be different.

4.1.3 |DAT Imagedata

The IDAT chunk contains the actual image data. To create this data:

1. Beginwithimage scanlinesrepresented as described in Image layout (Section 2.3); thelayout and total
size of thisraw data are determined by the fields of IHDR.

2. Filter the image data according to the filtering method specified by the IHDR chunk. (Note that with
filter method 0, the only one currently defined, thisimplies prepending afilter-type byte to each scan-
line.)

3. Compress thefiltered data using the compression method specified by the IHDR chunk.

The IDAT chunk contains the output datastream of the compression algorithm.
To read the image data, reverse this process.

There can bemultiple IDAT chunks; if so, they must appear consecutively with no other intervening chunks.
The compressed datastream isthen the concatenation of thecontentsof all theIDAT chunks. Theencoder can
dividethe compressed datastream into IDAT chunkshowever it wishes. (Multiple IDAT chunksare allowed
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so that encoders can work in afixed amount of memory; typically the chunk size will correspond to the en-
coder’sbuffer size.) It isimportant to emphasizethat IDAT chunk boundaries have no semantic significance
and can occur at any point in the compressed datastream. A PNG file in which each IDAT chunk contains
only one databyteisvalid, though remarkably wasteful of space. (For that matter, zero-length IDAT chunks
are valid, though even more wasteful .)

See Filter Algorithms (Chapter 6) and Deflate/Inflate Compression (Chapter 5) for details.

414 |END Imagetrailer

The IEND chunk must appear LAST. It marks the end of the PNG datastream. The chunk’s data field is
empty.

4.2 Ancillary chunks

All ancillary chunks are optional, in the sense that encoders need not write them and decoders can ignore
them. However, encoders are encouraged to write the standard ancillary chunks when the information is
available, and decoders are encouraged to interpret these chunks when appropriate and feasible.

The standard ancillary chunks are described in the next four sections. This is not necessarily the order in
which they would appear in a PNG datastream.

4.2.1 Transparency information

This chunk conveys transparency information in datastreams that do not include a full alphachannel.

42.1.1 tRNSTransparency

ThetRNS chunk specifiesthat theimage usessimpl etransparency: either al phaval uesassociated with pal ette
entries (for indexed-color images) or a single transparent color (for grayscale and truecolor images). Al-
though simple transparency is not as elegant as the full alpha channel, it requires less storage space and is
sufficient for many common cases.

For color type 3 (indexed color), the tRNS chunk contains a series of one-byte alpha values, corresponding
to entriesin the PLTE chunk:

Al pha for palette index 0: 1 byte
Al pha for palette index 1: 1 byte
...etc...
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Each entry indicates that pixels of the corresponding palette index must be treated as having the specified
alphavaue. Alphavalueshavethe sameinterpretationasin an 8-bit full a phachannel: Oisfully transparent,
255isfully opague, regardless of image bit depth. ThetRNS chunk must not contain more alphavaluesthan
there are palette entries, but tRNS can contain fewer values than there are palette entries. In this case, the
alphavaluefor al remaining palette entries is assumed to be 255. In the common case in which only palette
index 0 need be made transparent, only aone-byte tRNS chunk is needed.

For color type O (grayscale), the tRNS chunk containsa single gray level value, stored in the format:
Gay: 2 bytes, range 0..2bitdepth _ 7

(If the image bit depth is less than 16, the |east significant bits are used and the others are 0.) Pixels of the
specified gray level are to be treated as transparent (equivalent to apha value 0); all other pixels are to be
treated as fully opaque (alphavalue 2Pitdepth _ 1),

For color type 2 (truecolor), the tRNS chunk containsa single RGB color value, stored in the format:

Red: 2 bytes, range 0..2bitdepth _q
Geen: 2 bytes, range 0..2Pitdepth 7
Blue: 2 bytes, range 0..2Pitdepth _q

(If the image bit depth is less than 16, the |east significant bits are used and the others are 0.) Pixels of the
specified color value are to be treated as transparent (equivalent to alphavaue 0); al other pixels are to be
treated as fully opaque (alphavalue 2Pitdepth _ 1),

tRNS is prohibited for color types 4 and 6, since afull alphachannel isaready present in those cases.

Note: when dealing with 16-bit grayscal e or truecol or data, it isimportant to compare both bytes of thesample
values to determine whether a pixel is transparent. Although decoders may drop the low-order byte of the
samplesfor display, thismust not occur until after the data has been tested for transparency. For example, if
the grayscalelevel 0x0001 is specified to be transparent, it would be incorrect to compare only the high-order
byte and decide that 0x0002 is al so transparent.

When present, the tRNS chunk must precede thefirst IDAT chunk, and must follow the PLTE chunk, if any.

4.2.2 Color spaceinformation

These chunksrelate the image samplesto the desired display intensity.

4221 gAMA Imagegamma

The gAMA chunk specifies the relationship between the image samples and the desired display output in-
tensity as a power function:

sample = light_out8&*™™m@
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Heresanpl e and | i ght _out are normalized to the range 0.0 (minimum intensity) to 1.0 (maximum in-
tensity). Therefore:

sample = integer_sample/(2P1tdepth _ 1)

The gAMA chunk contains:
Ganma: 4 bytes

Theva ueisencoded asa4-byteunsigned integer, representing gammatimes 100000. For example, agamma
of 1/2.2 would be stored as 45455.

The gamma value has no effect on alpha samples, which are always alinear fraction of full opacity.

If the encoder does not know the image's gamma value, it should not write agAMA chunk; the absence of a
gAMA chunk indicates that the gamma s unknown.

Technically, “ desired display output intensity” is not specific enough; one needs to specify the viewing con-
ditionsunder which the outputisdesired. For gAMA theseare the reference viewing conditionsof the SRGB
specification [SRGB], which are based on ISO standards [| SO-3664]. Adjusting for different viewing con-
ditionsis a complex process normally handled by a Color Management System (CMS). If this adjustment
is not performed, the error is usually small. Applications desiring high color fidelity may wish to use an
SRGB chunk (see the SRGB chunk specification, Paragraph 4.2.2.3) or an iCCP chunk (see the iCCP chunk
specification, Paragraph 4.2.2.4).

If the gAMA chunk appears, it must precede thefirst IDAT chunk, and it must a so precede the PLTE chunk
if present. An sRGB chunk or iCCP chunk, when present and recognized, overrides the gAMA chunk.

See Gamma correction (Section 2.7), Recommendations for Encoders: Encoder gamma handling (Section
9.2), and Recommendations for Decoders. Decoder gamma handling (Section 10.5).

4.2.2.2 cHRM Primary chromaticities

Applicationsthat need device-independent specification of colorsin a PNG file can use the cHRM chunk to
specify the 1931 CIE x, y chromaticities of the red, green, and blue primaries used in the image, and the
referenced white point. See Color Tutorial (Chapter 14) for more information.

The cHRM chunk contains:

White Point x: 4 bytes
White Point y: 4 bytes

Red x: 4 bytes
Red vy: 4 bytes
Green x: 4 bytes
Green vy: 4 bytes
Bl ue x: 4 bytes
Bl ue vy: 4 bytes
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Each valueisencoded asa4-byte unsignedinteger, representingthe x ory valuetimes 100000. For example,
avalueof 0.3127 would be stored as the integer 31270.

cHRM isalowedin al PNG files, dthoughitis of little value for grayscale images.

If the encoder does not know the chromaticity values, it should not write a cHRM chunk; the absence of a
cHRM chunk indicatesthat the image's primary colors are device-dependent.

If the cHRM chunk appears, it must precede thefirst IDAT chunk, and it must also precede the PLTE chunk
if present.

An sRGB chunk or iCCP chunk, when present and recognized, overrides the cHRM chunk.

See the SRGB chunk specification (Paragraph 4.2.2.3), the iCCP chunk specification (Paragraph 4.2.2.4),
Recommendationsfor Encoders: Encoder color handling (Section 9.3), and Recommendationsfor Decoders:
Decoder color handling (Section 10.6).

4.2.2.3 sRGB Standard RGB color space

If the SRGB chunk is present, the image samples conform to the SRGB color space [SRGB], and should be
displayed using the specified rendering intent as defined by the International Color Consortium [ICC].

The sRGB chunk contains:
Rendering intent: 1 byte
Thefollowing values are defined for the rendering intent:

0: Perceptual
1: Relative colorinetric
2: Saturation
3: Absolute colorinetric

Perceptual intent is for images preferring good adaptation to the output device gamut at the expense of col-
orimetric accuracy, like photographs.

Relative colorimetric intent is for images requiring color appearance matching (relative to the output device
white point), likelogos.

Saturation intent isfor images preferring preservation of saturation at the expense of hue and lightness, like
charts and graphs.

Absolute colorimetric intent is for images requiring preservation of absolute colorimetry, like proofs (pre-
views of images destined for a different output device).

An application that writes the SRGB chunk should also write agAMA chunk (and perhaps a cHRM chunk)
for compatibility with applications that do not use the SRGB chunk. In this situation, only the following
values may be used:
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gAMA:
Ganma: 45455

Cc HRM
Wiite Point x: 31270
White Point y: 32900

Red x: 64000
Red vy: 33000
G een x: 30000
G een vy: 60000
Bl ue x: 15000
Bl ue y: 6000

When the sSRGB chunk is present, applicationsthat recognizeit and are capable of color management [ICC]
must ignore the gAMA and cHRM chunks and use the SRGB chunk instead.

Applicationsthat recognize the SRGB chunk but are not capabl e of full-fledged color management must a so
ignorethegAMA and cHRM chunks, becausethe applicationsal ready know what val uesthose chunks should
contain. The applications must therefore use the values of gAMA and cHRM given above as if they had
appeared in gAMA and cHRM chunks.

If the SRGB chunk appears, it must precede thefirst IDAT chunk, and it must also precede the PLTE chunk
if present. The SRGB and i CCP chunks should not both appear.

4224 iCCPEmbedded ICC profile

If the iCCP chunk is present, the image samples conform to the color space represented by the embedded
| CC profile as defined by the International Color Consortium [ICC]. The color space of the |CC profile must
be an RGB color space for color images (PNG color types 2, 3, and 6), or a monochrome grayscale color
space for grayscale images (PNG color types 0 and 4).

The iCCP chunk contains:

Profile name: 1-79 bytes (character string)
Nul | separator: 1 byte
Conpression nethod: 1 byte
Conpressed profile: n bytes

Theformat islike the ZT Xt chunk. (see the ZT Xt chunk specification, Paragraph 4.2.3.2). The profile name
can be any convenient namefor referring to theprofile. It iscase-sensitiveand subject to the samerestrictions
as the keyword in a text chunk: it must contain only printable Latin-1 [ SO/IEC-8859-1] characters (33—
126 and 161-255) and spaces (32), but no leading, trailing, or consecutive spaces. The only value presently
defined for the compression method byteis0, meaning zlib datastream with deflate compression (see Deflate/
Inflate Compression, Chapter 5). Decompression of the remainder of the chunk yields the ICC profile.
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An application that writesthe iCCP chunk should a so write gAMA and cHRM chunksthat approximate the
ICC profile'stransfer function, for compatibility with applicationsthat do not use the iCCP chunk.

When the iCCP chunk is present, applicationsthat recognize it and are capable of color management [ICC]
should ignore the gAMA and cHRM chunks and use the i CCP chunk instead, but applicationsincapable of
full-fledged color management should use the gAMA and cHRM chunksif present.

A file should contain at most one embedded profile, whether explicit like iCCP or implicit like SRGB.

If the iCCP chunk appears, it must precede the first IDAT chunk, and it must also precede the PLTE chunk
if present.

4.2.3 Textual information
TheiTXt, tEXt, and ZT Xt chunks are used for conveying textual information associated withtheimage. This
specification refers to them generically as “text chunks’.

Each of thetext chunks containsasitsfirst field akeyword that indicatesthe type of information represented
by the text string. The following keywords are predefined and should be used where appropriate:

Title Short (one line) title or caption for inmage
Aut hor Narme of image’'s creator

Descri ption Description of inmage (possibly |ong)

Copyri ght Copyright notice

Creation Tinme Tinme of original inage creation

Sof t war e Software used to create the inmage

Di scl ai ner Legal discl ai nmer

War ni ng Warni ng of nature of content

Sour ce Device used to create the inage

Comment M scel | aneous comment; conversion from

G F comrent

For the Creation Time keyword, the date format defined in section 5.2.14 of RFC 1123 is suggested, but not
required [RFC-1123]. Decoders should allow for free-format text associated with thisor any other keyword.

Other keywords may beinvented for other purposes. Keywords of general interest can be registered with the
maintainers of the PNG specification. However, it is aso permitted to use private unregistered keywords.
(Private keywords should be reasonably self-explanatory, in order to minimize the chance that the same key-
word will be used for incompatible purposes by different people.)

Thekeyword must be at | east one character and lessthan 80 characterslong. Keywordsare alwaysinterpreted
accordingtothel SO/IEC 8859-1 (L atin-1) character set [| SO/IEC-8859-1]. They must containonly printable
Latin-1 characters and spaces; that is, only character codes 32—126 and 161-255 decimal are alowed. To
reduce the chances for human misreading of a keyword, leading and trailing spaces are forbidden, as are
consecutive spaces. Note also that the non-breaking space (code 160) is not permitted in keywords, since it
is visually indistinguishable from an ordinary space.
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Keywords must be spelled exactly as registered, so that decoders can use simple litera comparisons when
looking for particular keywords. In particular, keywords are considered case-sensitive.

Any number of text chunks can appear, and more than one with the same keyword is permissible.

See Recommendations for Encoders: Text chunk processing (Section 9.7) and Recommendations for De-
coders: Text chunk processing (Section 10.11).

423.1 tEXt Textual data

Textual information that the encoder wishes to record with the image can be stored in tEXt chunks. Each
tEXt chunk contains a keyword (see above) and atext string, in the format:

Keywor d: 1-79 bytes (character string)
Nul | separator: 1 byte
Text : n bytes (character string)

The keyword and text string are separated by a zero byte (null character). Neither the keyword nor the text
string can contain anull character. Note that the text string is not null-terminated (the length of the chunk is
sufficient information to locate the ending). The text string can be of any length from zero bytes up to the
maximum permissible chunk size less the length of the keyword and separator.

Thetext isinterpreted according to the ISO/IEC 8859-1 (Latin-1) character set [I SO/IEC-8859-1]. Thetext
string can contain any L atin-1 character. Newlinesinthetext string should berepresented by asinglelinefeed
character (decimal 10); use of other control characters in the text is discouraged.

4.2.3.2 ZTXt Compressed textual data

The ZTXt chunk contains textua data, just as tEXt does; however, ZT Xt takes advantage of compression.
The zTXt and tEXt chunks are semantically equivalent, but ZT Xt is recommended for storing large blocks
of text.

A ZT Xt chunk contains;

Keywor d: 1-79 bytes (character string)
Nul | separator: 1 byte
Conpression nethod: 1 byte
Conpressed text: n bytes

The keyword and null separator are exactly the same asin thetEXt chunk. Notethat the keyword isnot com-
pressed. The compression method byte identifiesthe compression method used in thiszT Xt chunk. Theonly
value presently defined for it is O (deflate/inflate compression). The compression method byteisfollowed by
a compressed datastream that makes up the remainder of the chunk. For compression method O, this datas-
tream adheres to the zlib datastream format (see Deflate/Inflate Compression, Chapter 5). Decompression
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of this datastream yields Latin-1 text that is identical to the text that would be stored in an equivalent tEXt
chunk.

4.23.3 iTXt International textual data

This chunk is semantically equivalent to the tEXt and zT Xt chunks, but the textual dataisin the UTF-8 en-
coding of the Unicode character set instead of Latin-1. This chunk contains:

Keywor d: 1-79 bytes (character string)

Nul | separator: 1 byte

Conpression flag: 1 byte

Conpression nmethod: 1 byte

Language tag: 0 or nore bytes (character string)
Nul | separator: 1 byte

Transl ated keyword: O or nore bytes

Nul | separator: 1 byte

Text : 0 or nore bytes

The keyword is described above.

The compression flag is 0 for uncompressed text, 1 for compressed text. Only the text field may be com-
pressed. The only value presently defined for the compression method byte is 0, meaning zlib datastream
with deflate compression. For uncompressed text, encoders should set the compression method to 0 and de-
coders should ignoreit.

Thelanguagetag [RFC-1766] indicatesthe human language used by thetranslated keyword and thetext. Un-
like the keyword, the language tag is case-insensitive. It isan ASCII [1SO-646] string consisting of hyphen-
separated wordsof 1-8 letters each (for example: cn, en-uk, no-bok, x-klingon). If thefirst wordistwoletters
long, itisan 1SO language code [1SO-639]. If the language tag is empty, the language is unspecified.

The trandated keyword and text both use the UTF-8 encoding of the Unicode character set
[ISO/IEC-10646-1], and neither may contain a zero byte (null character). The text, unlike the other
strings, is not null-terminated; its length isimplied by the chunk length.

Line breaks should not appear in the translated keyword. In the text, a newline should be represented by
asingleline feed character (decimal 10). The remaining control characters (1-9, 11-31, and 127-159) are
discouraged in both the translated keyword and the text. Note that in UTF-8 there is a difference between
the characters 128-159 (which are discouraged) and the bytes 128-159 (which are often necessary).

The tranglated keyword, if not empty, should contain a translation of the keyword into the language indi-
cated by the language tag, and applicationsdisplaying the keyword should display the translated keyword in
addition.
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424 Miscelaneousinformation

These chunks are used for conveying other information associated with the image.

4241 bKGD Background color

The bKGD chunk specifies a default background color to present the image against. Note that viewers are
not bound to honor this chunk; aviewer can choose to use a different background.

For color type 3 (indexed color), the bK GD chunk contains:
Pal ette index: 1 byte

Thevalueisthe palette index of the color to be used as background.

For color types 0 and 4 (grayscale, with or without alpha), bK GD contains:
Gray: 2 bytes, range 0..2Pitdepth _ 7

(If the image bit depth is less than 16, the least significant bits are used and the others are 0.) The valueis
the gray level to be used as background.

For color types 2 and 6 (truecolor, with or without alpha), bK GD contains:

Red: 2 bytes, range 0..2bitdepth _ 7
Green: 2 bytes, range 0.2bitdepth 7
Blue: 2 bytes, range 0..2bitdepth 1

(If theimage bit depth islessthan 16, theleast significant bitsare used and the othersare 0.) Thisisthe RGB
color to be used as background.

When present, the bK GD chunk must precede thefirst IDAT chunk, and must follow the PLTE chunk, if any.

See Recommendations for Decoders: Background color (Section 10.7).

4242 pHYsPhysical pixel dimensions

The pHY s chunk specifies the intended pixel size or aspect ratio for display of theimage. It contains:

Pi xel s per unit, X axis: 4 bytes (unsigned integer)
Pi xel s per unit, Y axis: 4 bytes (unsigned integer)
Unit specifier: 1 byte

Thefollowing values are defined for the unit specifier:
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O: unit is unknown
1: unit is the neter

When the unit specifier is 0, the pHY s chunk defines pixel aspect ratio only; the actual size of the pixels
remains unspecified.

Conversion note: oneinch isequal to exactly 0.0254 meters.

If thisancillary chunk is not present, pixels are assumed to be square, and the physical size of each pixel is
unknown.

If present, this chunk must precede thefirst IDAT chunk.

See Recommendations for Decoders: Pixel dimensions (Section 10.2).

4243 SBIT Significant bits

To simplify decoders, PNG specifies that only certain sample depths can be used, and further specifies that
sample values should be scaled to the full range of possiblevalues at the sample depth. However, the sSBIT
chunk isprovidedin order to store the original number of significant bits. Thisallowsdecodersto recover the
original datalosslessly even if the data had a sample depth not directly supported by PNG. We recommend
that an encoder emit an sBIT chunk if it has converted the data from alower sample depth.

For color type O (grayscale), the sBIT chunk contains a single byte, indicating the number of bits that were
significant in the source data.

For color type 2 (truecolor), the sBIT chunk contains three bytes, indicating the number of bits that were
significant in the source data for the red, green, and blue channels, respectively.

For color type 3 (indexed color), the sBIT chunk containsthree bytes, indicating the number of bitsthat were
significant in the source datafor the red, green, and blue components of the pal ette entries, respectively.

For color type 4 (grayscae with apha channel), the sBIT chunk contains two bytes, indicating the number
of bitsthat were significant in the source grayscale data and the source a pha data, respectively.

For color type 6 (truecolor with aphachannel), the sBIT chunk contains four bytes, indicating the number
of bitsthat were significant in the source data for the red, green, blue, and a pha channels, respectively.

Each depth specified in sBIT must be greater than zero and less than or equal to the sample depth (whichis
8 for indexed-col or images, and the bit depth given in IHDR for other color types).

A decoder need not pay attention to sBIT: the stored imageisavalid PNG file of the sample depth indicated
by IHDR. However, if the decoder wishes to recover the origina data at its origina precision, this can be
doneby right-shiftingthe stored sampl es (the stored pal ette entries, for anindexed-col orimage). The encoder
must scal e the datain such away that the high-order bits match the original data.

If the sBIT chunk appears, it must precede thefirst IDAT chunk, and it must also precede the PLTE chunk if
present.
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See Recommendations for Encoders: Sample depth scaling (Section 9.1) and Recommendations for De-
coders: Sample depth rescaling (Section 10.4).

4244 sPLT Suggested palette

This chunk can be used to suggest a reduced palette to be used when the display device is not capable of
displaying the full range of colors present in theimage. If present, it provides arecommended set of colors,
with alphaand frequency information, that can be used to construct areduced pal etteto which the PNG image
can be quantized.

Thischunk containsanull-terminated text string that namesthe pal ette and aone-byte sampl e depth, followed
by a series of palette entries, each asix-byte or ten-byte series containing five unsigned integers:

Pal ette nane: 1-79 bytes (character string)
Null terminator: 1 byte

Sanpl e dept h: 1 byte

Red: 1 or 2 bytes

G een: 1 or 2 bytes

Bl ue: 1 or 2 bytes

Al pha: 1 or 2 bytes

Frequency: 2 bytes

...etc...

There can be any number of entries; a decoder determines the number of entries from the remaining chunk
length after the sample depth byte. It is an error if this remaining length is not divisible by 6 (if the SPLT
sample depth is 8) or by 10 (if the SPLT sample depth is 16). Entries must appear in decreasing order of
frequency. There isno requirement that the entries all be used by the image, nor that they al be different.

The palette name can be any convenient name for referring to the palette (for example, “256 color including
Macintosh default”, “256 color including Windows-3.1 default”, “Optimal 512"). It may help applications
or peopleto choose the appropriate suggested pal ette when more than one appearsin aPNG file. The palette
name is case-sensitive and subject to the same restrictions as a text keyword: it must contain only printable
Latin-1[1SO/IEC-8859-1] characters (33—126 and 161-255) and spaces (32), but no leading, trailing, or con-
secutive spaces.

The sPLT sample depth must be 8 or 16.

The red, green, blue, and apha samples are either one or two bytes each, depending on the sPLT sample
depth, regardless of the image bit depth. The color samples are not premultiplied by alpha, nor are they
precomposited against any background. An alphavalue of 0 means fully transparent, while an aphavalue
of 255 (when the sPLT sample depthis 8) or 65535 (when the SPLT sample depth is 16) means fully opaque.
The palette samples have the same gamma and chromaticity values as those of the PNG image.

Each frequency valueis proportional to thefraction of pixelsin theimagethat are closest to that pal ette entry
in RGBA space, before the image has been composited against any background. The exact scale factor is
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chosen by the encoder, but should be chosen so that the range of individual val ues reasonably fillsthe range
0 to 65535. It is acceptable to artificialy inflate the frequencies for “important” colors such as thosein a
company logo or in the facid features of a portrait. Zero is avalid frequency meaning the color is “least
important” or that it israrely if ever used. But when al of the frequencies are zero, they are meaningless
(nothing may beinferred about the actual frequencies of the colors).

ThesPLT chunk can appear for any PNG color type. Notethat entriesin sSPLT can fall outsidethe color space
of the PNG image; for example, inagrayscale PNG, sPLT entrieswould typically satisfy R=G=B, but thisis
not required. Similarly, sSPLT entries can have nonopague a pha values even when the PN G image does not
use transparency.

If SPLT appears, it must precede the first IDAT chunk. There can be multiple SPLT chunks, but if so they
must have different palette names.

See Recommendations for Encoders: Suggested pal ettes (Section 9.5) and Recommendations for Decoders:
Suggested-pa ette and histogram usage (Section 10.10)

4245 hlIST Palette histogram

The hIST chunk givesthe approximate usage frequency of each color in the color palette. A hIST chunk can
appear only when a PLTE chunk appears. If aviewer isunableto provideal the colorslisted in the palette,
the histogram may help it decide how to choose a subset of the colorsfor display.

The hIST chunk contains a series of 2-byte (16 bit) unsigned integers. There must be exactly one entry for
each entry inthe PLTE chunk. Each entry is proportional to the fraction of pixelsin theimage that have that
pa ette index; the exact scale factor is chosen by the encoder.

Histogram entries are approximate, with the exception that a zero entry specifies that the corresponding
palette entry isnot used at al intheimage. It isrequired that a histogram entry be nonzero if there are any
pixelsof that color.

When the palette is a suggested quantization of a truecol or image, the histogram is necessarily approximate,
since a decoder may map pixels to palette entries differently than the encoder did. In this situation, zero
entries should not appear.

The hIST chunk, if it appears, must follow the PLTE chunk, and must precede the first IDAT chunk.

See Rationale: Palette histograms (Section 12.15) and Recommendations for Decoders. Suggested-pal ette
and histogram usage (Section 10.10).

4246 tIME Imagelast-modification time

The tIME chunk gives the time of the last image modification (not the time of initial image creation). It
contains:
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Year :
Mont h:
Day:
Hour :
M nut e:
Second:

bytes (conplete;

2

1 byte (1-12)
1 byte (1-31)
1 byte (0-23)
1 byte (0-59)
1 byte (0-60)
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(yes,

for exanple,

60,

1995, not 95)

for | eap seconds; not 61,

a conmmon error)

Universal Time (UTC, aso called GMT) should be specified rather than local time.

The tIME chunk is intended for use as an automatically-applied time stamp that is updated whenever the
image datais changed. It is recommended that tIME not be changed by PNG editors that do not change
the image data. The Creation Time text keyword can be used for a user-supplied time (see the text chunk
specification, Paragraph 4.2.3).

4.3 Summary of standard chunks

This table summarizes some properties of the standard chunk types.

Critical

chunks (nust appear in this order,

is optional):

Name Multiple
K?

| HDR No

PLTE No

| DAT Yes

| END No

except PLTE

Ordering constraints

Must
Bef ore | DAT

be first

Mul tiple | DATs nust be consecutive

Must

be | ast

Anci |l ary chunks (need not appear in this order):

Name Muiltiple
?

g

CHRM
gANVA
i CCP
sBIT
SRGB
bKGD
hl ST
t RNS
pHYs
SPLT
t1 M
i TXt

cEnb6665656566656

S

Ordering constraints

PLTE
PLTE
PLTE
PLTE
PLTE
PLTE;

Bef or e
Bef or e
Bef or e
Bef or e
Bef or e
After

After PLTE;
After PLTE;
Bef ore | DAT
Bef ore | DAT
None

None

| DAT
| DAT
| DAT
and | DAT
and | DAT
before | DAT
before | DAT
before | DAT

and
and
and
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t EXt Yes None
ZTXt Yes None

Standard keywords for text chunks:

Title Short (one line) title or caption for inmage
Aut hor Narme of image’'s creator

Descri ption Description of inmage (possibly |ong)

Copyri ght Copyright notice

Creation Tinme Tinme of original inage creation

Sof t war e Software used to create the inmage

Di scl ai ner Legal discl ai nmer

War ni ng Warni ng of nature of content

Sour ce Device used to create the inage

Coment M scel | aneous comment; conversion from

G F comrent

4.4 Additional chunk types

Additional public PNG chunk types are defined in the document “ Extensionsto the PNG 1.2 Specification,
Version 1.2.0" [PNG-EXTENSIONS]. Chunksdescribed there are expected to be lesswidely supported than
those defined in this specification. However, application authors are encouraged to use those chunk types
whenever appropriate for their applications. Additional chunk types can be proposed for inclusion in that
list by contacting the PNG specification maintainers at png-info@uunet.uu.net or at png-group@w3.org.

New public chunkswill beregistered only if they are of useto othersand do not viol atethe design philosophy
of PNG. Chunk registrationisnot automatic, although it isthe intent of the authorsthat it be straightforward
when a new chunk of potentialy wide application is needed. Note that the creation of new critical chunk
typesis discouraged unless absolutely necessary.

Applications can aso use private chunk typesto carry datathat is not of interest to other applications. See
Recommendations for Encoders: Use of private chunks (Section 9.8).

Decoders must be prepared to encounter unrecognized public or private chunk type codes. Unrecognized
chunk types must be handled as described in Chunk naming conventions (Section 3.3).

5 Deflate/Inflate Compression

PNG compression method O (the only compression method presently defined for PNG) specifies deflate/
inflate compressionwith aslidingwindow of at most 32768 bytes. Deflate compressionisan LZ77 derivative
used in zip, gzip, pkzip, and related programs. Extensive research has been done supporting its patent-free
status. Portable C implementations are freely available.

Deflate-compressed datastreams within PNG are stored in the “zlib” format, which has the structure:
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Conpressi on met hod/ flags code: 1 byte
Addi tional flags/check bits: 1 byte
Conpressed data bl ocks: n bytes
Check val ue: 4 bytes

Further details on thisformat are given in the zlib specification [RFC-1950].

For PNG compression method 0, the zlib compression method/flags code must specify method code 8 (“de-
flate” compression) and an LZ77 window size of not more than 32768 bytes. Note that the zlib compression
method number is not the same asthe PNG compression method number. The additional flags must not spec-
ify a preset dictionary. A PNG decoder must be able to decompress any valid zlib datastream that satisfies
these additional constraints.

If the datato be compressed contains 16384 bytes or fewer, the encoder can set the window size by rounding
up to apower of 2 (256 minimum). This decreases the memory required not only for encoding but also for
decoding, without adversely affecting the compression ratio.

The compressed datawithinthezlib datastream i s stored asaseries of blocks, each of which can represent raw
(uncompressed) data, L Z77-compressed data encoded with fixed Huffman codes, or LZ77-compressed data
encoded with custom Huffman codes. A marker bit in thefinal block identifiesit as the last block, allowing
the decoder to recognize the end of the compressed datastream. Further detailson the compression algorithm
and the encoding are given in the deflate specification [RFC-1951].

The check value stored at the end of the zlib datastream is calculated on the uncompressed data represented
by the datastream. Note that the algorithm used is not the same as the CRC cal culation used for PNG chunk
check values. The zlib check value is useful mainly as a cross-check that the deflate and inflate algorithms
are implemented correctly. Verifying the chunk CRCs provides adequate confidence that the PNG file has
been transmitted undamaged.

InaPNG file, the concatenation of the contentsof all the|DAT chunksmakesup azlib datastream as specified
above. Thisdatastream decompresses to filtered image data as described el sewhere in this document.

It isimportant to emphasize that the boundaries between IDAT chunks are arbitrary and can fall anywhere
in the zlib datastream. Thereis not necessarily any correlation between IDAT chunk boundaries and deflate
block boundaries or any other feature of the zlib data. For example, it isentirely possiblefor the terminating
Zlib check value to be split across IDAT chunks.

Inthesamevein, thereisno required correl ation between the structure of theimage data (i.e., scanlinebound-
aries) and deflate block boundaries or IDAT chunk boundaries. The completeimage dataisrepresented by a
single zlib datastream that is stored in some number of IDAT chunks; a decoder that assumes any more than
thisisincorrect. (Of course, some encoder implementationsmay emit filesin which some of these structures
areindeed related. But decoders cannot rely on this.)

PNG also useszlib datastreamsini TXt, zTXt, and i CCP chunks, where theremainder of the chunk following
the compression method byteisazlib datastream as specified above. Unliketheimage data, such datastreams
are not split across chunks; each iTXt, ZTXt, or iCCP chunk contains an independent zlib datastream.

Additional documentation and portable C codefor deflateand inflate are avail ablefrom the Info-ZI P archives
at ftp://ftp.cdrom.com/publ/infozip/.



6. FILTERALGORITHMS 33

6 Filter Algorithms

This chapter describes the filter a gorithms that can be applied before compression. The purpose of these
filtersisto prepare the image data for optimum compression.

6.1 Filter types

PNG filter method O defines five basic filter types:

Type Nane

0 None

1 Sub

2 Up

3 Aver age
4 Paet h

(Note that filter method 0 in IHDR specifies exactly this set of five filter types. If the set of filter typesis
ever extended, a different filter method number will be assigned to the extended set, so that decoders need
not decompress the data to discover that it contains unsupported filter types.)

The encoder can choose which of these filter algorithms to apply on a scanline-by-scanline basis. In the
image data sent to the compression step, each scanline is preceded by a filter-type byte that specifies the
filter algorithm used for that scanline.

Filtering algorithms are applied to bytes, not to pixels, regardless of the bit depth or color type of the im-
age. Thefiltering algorithms work on the byte sequence formed by a scanline that has been represented as
described in Image layout (Section 2.3). If theimage includes an alphachannel, the alphadataisfiltered in
the same way as the image data.

When theimageisinterlaced, each pass of theinterlace patternistreated as an independentimagefor filtering
purposes. The filters work on the byte sequences formed by the pixels actually transmitted during a pass,
and the “previous scanling” is the one previously transmitted in the same pass, not the one adjacent in the
complete image. Note that the subimage transmitted in any one passis aways rectangular, but is of smaller
width and/or height than the complete image. Filtering is not applied when this subimageis empty.

For dl filters, the bytes “to the left of " the first pixel in a scanline must be treated as being zero. For filters
that refer to the prior scanline, the entire prior scanline must be treated as being zeroes for the first scanline
of an image (or of a pass of an interlaced image).

To reverse the effect of afilter, the decoder must use the decoded values of the prior pixel on the sameline,
the pixel immediately abovethe current pixel onthe prior line, and the pixel just to theleft of the pixel above.
Thisimpliesthat at least one scanline' sworth of image datawill haveto be stored by the decoder at al times.
Even though some filter types do not refer to the prior scanline, the decoder will always need to store each
scanline asit is decoded, since the next scanline might use afilter that referstoit.
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PNG imposes no restriction on which filter types can be applied to an image. However, the filters are not
equally effective on al types of data. See Recommendations for Encoders: Filter selection (Section 9.6).

See dso Rationale: Filtering (Section 12.9).

6.2 Filter typeO: None

WiththeNone( ) filter, the scanlineistransmitted unmodified; it is necessary only to insert afilter-type byte
before the data.

6.3 Filter typel: Sub
The Sub() filter transmitsthe difference between each byte and the value of the corresponding byte of the
prior pixel.
To compute the Sub() filter, apply the following formulato each byte of the scanline:
Sub(x) = Rawm(x) - Raw( x- bpp)

where x ranges from zero to the number of bytes representing the scanline minus one, Raw( ) refersto the
raw data byte at that byte position in the scanline, and bpp is defined as the number of bytes per complete
pixel, roundinguptoone. For example, for color type2 withabit depth of 16, bppisequal to 6 (three samples,
two bytes per sample); for color type O with a bit depth of 2, bpp isequa to 1 (rounding up); for color type
4 with a bit depth of 16, bpp isequal to 4 (two-byte grayscale sample, plus two-byte alpha sample).

Notethiscomputationisdonefor each byte, regardlessof bit depth. Ina16-bit image, each MSB ispredicted
from the preceding MSB and each L SB from the preceding L SB, because of the way that bpp is defined.

Unsigned arithmetic modulo 256 is used, so that both the inputs and outputsfit into bytes. The sequence of
Sub valuesistransmitted as the filtered scanline.

Forall x < 0,assumeRaw(x) = 0.

To reverse the effect of the Sub() filter after decompression, output the following value:
Sub(x) + Raw(x- bpp)

(computed mod 256), where Raw( ) refers to the bytes already decoded.

6.4 Filter type2: Up

TheUp() filterisjustlikethe Sub() filter except that the pixel immediately abovethe current pixel, rather
than just to its | eft, is used as the predictor.

To computethe Up() filter, apply the following formulato each byte of the scanline:



6. FILTERALGORITHMS 35

Up(x) = Raw(x) - Prior(x)

where x ranges from zero to the number of bytes representing the scanline minus one, Raw( ) refersto the
raw data byte at that byte position in the scanline, and Pr i or ( x) refersto the unfiltered bytes of the prior
scanline.

Notethisisdonefor each byte, regardlessof bit depth. Unsigned arithmetic modul o 256 isused, so that both
the inputs and outputsfit into bytes. The sequence of Up valuesis transmitted as the filtered scanline.

On thefirst scanline of an image (or of apass of an interlaced image), assumePri or (x) = 0 foral x.

To reverse the effect of the Up() filter after decompression, output the following value:
Up(x) + Prior(x)

(computed mod 256), where Pri or () refersto the decoded bytes of the prior scanline.

6.5 Filter type 3: Average
The Aver age() filter usesthe average of the two neighboring pixels (Ieft and above) to predict the value
of apixel.

To computethe Aver age() filter, apply the following formula to each byte of the scanline:
Average(x) = Raw(x) - floor ((Raw x-bpp)+Prior(x))/2)

where x ranges from zero to the number of bytes representing the scanline minus one, Raw( ) refersto the
raw databyteat that byte positioninthescanline, Pri or () referstothe unfiltered bytesof theprior scanline,
and bpp isdefined as for the Sub() filter.

Note thisis donefor each byte, regardless of bit depth. The sequence of Aver age valuesis transmitted as
the filtered scanline.

The subtraction of the predicted value from the raw byte must be done modulo 256, so that both the inputs
and outputsfit into bytes. However, the sum Raw( x- bpp) +Pri or (x) must beformed without overflow
(using at least nine-bit arithmetic). f | oor () indicatesthat the result of the division isrounded to the next
lower integer if fractional; in other words, it isan integer division or right shift operation.

Fordlx < 0,assumeRaw( x) = 0. Onthefirst scanlineof animage (or of apassof aninterlacedimage),
assumePrior(x) = Oforalx.

To reverse the effect of the Aver age() filter after decompression, output the following value:
Average(x) + floor((Raw x-bpp) +Prior(x))/2)

where the result is computed mod 256, but the prediction is calculated in the same way as for encoding.
Raw() referstothe bytesaready decoded, and Pri or () refersto the decoded bytes of the prior scanline.
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6.6 Filter type4: Paeth

The Paet h() filter computes a simple linear function of the three neighboring pixels (Ieft, above, upper
left), then chooses as predictor the neighboring pixel closest to the computed value. Thistechniqueisdueto
Alan W. Paeth [PAETH].

To computethe Paet h()) filter, apply the following formulato each byte of the scanline:

Paet h(x) = Rawm x) -
Paet hPr edi ct or (Raw( x- bpp), Prior(x), Prior(x-bpp))

where x ranges from zero to the number of bytes representing the scanline minus one, Raw( ) refersto the
raw databyteat that byte positioninthescanline, Pri or () referstotheunfiltered bytesof theprior scanline,
and bpp isdefined as for the Sub() filter.

Notethisisdonefor each byte, regardlessof bit depth. Unsigned arithmetic modul o 256 isused, so that both
the inputs and outputsfit into bytes. The sequence of Paet h valuesistransmitted as the filtered scanline.

The Paet hPr edi ct or () functionisdefined by the following pseudocode:

functi on PaethPredictor (a, b, ¢)

begi n
; a=left, b = above, ¢ = upper |eft
p:=a+b-c ; initial estimate
pa := abs(p - a) ; distances to a, b, c
pb := abs(p - b)
pc := abs(p - ¢)

; return nearest of a,b,c,
; breaking ties in order a,b,c.
if pa <= pb AND pa <= pc then return a
else if pb <= pc then return b
el se return c
end

The calculations within the Paet hPr edi ct or () function must be performed exactly, without overflow.
Arithmetic modulo 256 is to be used only for the final step of subtracting the function result from the target
byte value.

Note that the order in which tiesare broken iscritical and must not be altered. Thetie break order is:
pixel to the left, pixel above, pixe to the upper left. (Thisorder differs from that given in Paeth’s article.)

Forallx < 0,assumeRaw(x) = OandPrior(x) = 0.Onthefirstscanlineof animage (or of apass
of an interlaced image), assumePri or (x) = O foral x.

To reverse the effect of the Paet h() filter after decompression, output the following value:

Paet h(x) + PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp))
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(computed mod 256), where Raw() and Pri or () refer to bytes aready decoded. Exactly the same
Paet hPr edi ct or () functionisused by both encoder and decoder.

7 Chunk Ordering Rules

To alow new chunk typesto be added to PNG, it is necessary to establish rules about the ordering require-
ments for al chunk types. Otherwise a PNG editing program cannot know what to do when it encountersan
unknown chunk.

We define a“PNG editor” as aprogram that modifies a PNG file and wishesto preserve as much as possible
of the ancillary information in the file. Two examples of PNG editors are a program that adds or modifies
text chunks, and a program that adds a suggested palette to a truecolor PNG file. Ordinary image editors
are not PNG editorsin this sense, because they usually discard all unrecognized information while reading
in animage. (Note: we strongly encourage programs handling PNG files to preserve ancillary information
whenever possible)

As an example of possible problems, consider a hypothetical new ancillary chunk typethat is safe-to-copy
and is required to appear after PLTE if PLTE is present. If our program to add a suggested PLTE does not
recognize this new chunk, it may insert PLTE in the wrong place, namely after the new chunk. We could
prevent such problems by requiring PNG editorsto discard all unknown chunks, but that isavery unattractive
solution. Instead, PNG requires ancillary chunks not to have ordering restrictions like this.

To prevent this type of problem while alowing for future extension, we put some constraints on both the
behavior of PNG editors and the allowed ordering requirements for chunks.

7.1 Behavior of PNG editors

Therulesfor PNG editors are;

e When copying an unknown unsafe-to-copy ancillary chunk, a PNG editor must not move the chunk
relative to any critical chunk. It can relocate the chunk freely relative to other ancillary chunks that
occur between the same pair of critical chunks. (Thisiswell defined since the editor must not add,
delete, modify, or reorder critical chunksif it is preserving unknown unsafe-to-copy chunks.)

¢ When copying an unknown safe-to-copy ancillary chunk, a PNG editor must not movethe chunk from
before IDAT to after IDAT or viceversa. (Thisiswell defined because IDAT is always present.) Any
other reordering is permitted.

e When copying a known ancillary chunk type, an editor need only honor the specific chunk ordering
rules that exist for that chunk type. However, it can always choose to apply the above general rules
instead.

e PNG editors must give up on encountering an unknown critical chunk type, because there is no way
to be certain that a valid file will result from modifying a file containing such a chunk. (Note that
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simply discarding the chunk is not good enough, because it might have unknown implicationsfor the
interpretation of other chunks.)

These rules are expressed in terms of copying chunks from an input file to an output file, but they apply in
the obviousway if a PNG fileismodified in place.

See aso Chunk naming conventions (Section 3.3).

7.2 Ordering of ancillary chunks

The ordering rules for an ancillary chunk type cannot be any stricter than this:

¢ Unsafe-to-copy chunks can have ordering requirements relativeto critical chunks.

e Safe-to-copy chunks can have ordering requirements relativeto IDAT.

Theactual ordering rulesfor any particular ancillary chunk type may beweaker. Seefor exampletheordering
rules for the standard ancillary chunk types (Summary of standard chunks, Section 4.3).

Decoders must not assume more about the positioning of any ancillary chunk than is specified by the
chunk ordering rules. In particular, itisnever vaid to assume that a specific ancillary chunk type occurs
with any particular positioning relative to other ancillary chunks. (For example, it is unsafe to assume that
your private ancillary chunk occurs immediately before IEND. Even if your application always writes it
there, aPNG editor might have inserted some other ancillary chunk after it. But you can safely assume that
your chunk will remain somewhere between IDAT and IEND.)

7.3 Orderingof critical chunks
Critical chunkscan havearbitrary ordering requirements, because PNG editorsarerequired to giveup if they
encounter unknown critical chunks. For example, IHDR has the special ordering rule that it must aways

appear first. A PNG editor, or indeed any PNG-writing program, must know and follow the ordering rules
for any critical chunk typethat it can emit.

8 Miscellaneous Topics

8.1 Filenameextension

On systems where file names customarily include an extension signifying file type, the extension “.png” is
recommended for PNG files. Lowercase“.png” is preferred if file names are case-sensitive.
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8.2 Internet mediatype

The Internet Assigned Numbers Authority (IANA) has registered “image/png” as the Internet Media Type
for PNG [RFC-2045], [RFC-2048]. For robustness, decoders may choose to also support the interim media
type “image/x-png” that was in use before registration was complete.

8.3 Macintosh file layout

In the Apple Macintosh system, the following conventions are recommended:

e Thefour-bytefile type code for PNG filesis“PNGf”. (This code has been registered with Apple for
PNG files.) The creator code will vary depending on the creating application.

e The contents of the datafork must be a PNG file exactly as described in the rest of this specification.

e The contents of the resource fork are unspecified. It may be empty or may contain application-
dependent resources.

¢ WhentransferringaMacintosh PNG fileto anon-Macintosh system, only thedatafork should be trans-
ferred.

8.4 Multiple-image extension

PNGitselfisstrictly asingle-imageformat. However, it may be necessary to store multipleimageswithinone
file; for example, thisis needed to convert GIF animation files. The PNG Development Group has defined
and approved a multiple-image format based on PNG, called “Multiple-image Network Graphics (MNG)”
[MNG]. Thisisconsidered a separate file format and has adifferent signature. PNG-supporting applications
may or may not choose to support the multiple-image format.

See Rationale: Why not these features? (Section 12.3).

8.5 Security considerations

A PNG file or datastream is composed of a collection of explicitly typed “chunks’. Chunkswhose contents
are defined by the specification could actually contain anything, including malicious code. But thereis no
known risk that such malicious code could be executed on the recipient’s computer as aresult of decoding
the PNG image.

The possible security risks associated with private chunk types and future chunk types cannot be specified
at thistime. Security issueswill be considered when evaluating chunks proposed for registration as public
chunks. Thereisno additional security risk associ ated with unknown or unimplemented chunk types, because
such chunkswill beignored, or at most be copied into another PNG file.
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The text chunks contain keywords and data that is meant to be displayed as plain text. TheiCCP, sPLT, and
some public “extension” chunks contain keywords meant to be displayed as plain text. It is possiblethat if
adecoder displays such text without filtering out control characters, especially the ESC (escape) character,
certain systems or terminals could behave in undesirable and insecure ways. We recommend that decoders
filter out control characters to avoid this risk; see Recommendations for Decoders: Text chunk processing
(Section 10.11).

Every chunk beginswith alength field, making it easier to write decoders invulnerableto fraudulent chunks
that attempt to overflow buffers. The CRC at the end of every chunk provides arobust defense against acci-
dentally corrupted data. Also, the PNG signature bytes provide early detection of common file transmission
errors.

A decoder that failsto check CRCs could be subject to datacorruption. The only likely consequence of such
corruption is incorrectly displayed pixels within the image. Worse things might happen if the CRC of the
IHDR chunk isnot checked and thewidth or height fields are corrupted. See Recommendationsfor Decoders:
Error checking (Section 10.1).

A poorly written decoder might be subject to buffer overflow, because chunks can be extremely large, up to
231 — 1 byteslong. But properly written decoders will handle large chunks without difficulty.

9 Recommendationsfor Encoders

This chapter gives some recommendations for encoder behavior. The only absolute requirement on a PNG
encoder isthat it produce files that conform to the format specified in the preceding chapters. However, best
resultswill usually be achieved by following these recommendations.

9.1 Sampledepth scaling

When encoding input samples that have a sample depth that cannot be directly represented in PNG, the en-
coder must scal ethe samplesup to asampledepth that isallowed by PNG. The most accurate scaling method
isthelinear equation

out put = ROUND(i nput * MAXOUTSAMPLE / MAXI NSAMPLE)

where theinput samplesrange from 0 to MAXI NSAMPL E and the outputsrange from 0 to MAXOUTSAMPLE
(Which i 2sampledepth _ 1),

A closeapproximationto thelinear scaling method can be achieved by “1eft bit replication”, which isshifting
thevalid bitsto begininthemost significant bit and repeating the most significant bitsinto theopen bits. This
method is often faster to compute than linear scaling. As an example, assume that 5-bit samples are being
scaled up to 8 bits. If the source sample valueis 27 (in the range from 0-31), then the original bits are:
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Left bit replication gives avalue of 222:
76543 210

| :::::::l | ===
| Leftmost Bits Repeated to Fill Open Bits

Oiginal Bits

which matches the value computed by the linear equation. Left bit replication usually givesthe same value
aslinear scaling and is never off by more than one.

A distinctly less accurate approximation is obtained by simply left-shifting the input value and filling the
low order bits with zeroes. This scheme cannot reproduce white exactly, since it does not generate an all-
ones maximum value; the net effect is to darken the image slightly. This method is not recommended in
genera, but it does have the effect of improving compression, particularly when dealing with greater-than-
eight-bit sampledepths. Sincetherelativeerror introduced by zero-fill scalingissmall at high sampledepths,
some encoders may chooseto useit. Zero-fill must not be used for a phachannel data, however, since many
decoderswill special-case alphavaluesof all zeroesand all ones. It isimportant to represent both thosevalues
exactly inthe scaled data.

When the encoder writes an sBIT chunk, it is required to do the scaling in such a way that the high-order
bits of the stored samples match the original data. That is, if the SBIT chunk specifies a sample depth of S,
the high-order S bits of the stored data must agree with the origina S-bit data values. This allows decoders
to recover the origina data by shifting right. The added low-order bitsare not constrained. Note that all the
above scaing methods meet thisrestriction.

When scaling up source data, it is recommended that the low-order bitsbefilled consistently for all samples;
that is, the same source value should generate the same sample value at any pixel position. Thisimproves
compression by reducing the number of distinct samplevaues. However, thisis not aregquirement, and some
encoders may choose not to follow it. For example, an encoder might instead dither the low-order bits, im-
proving displayed image quality at the price of increasing file size.

In some applications the original source data may have arange that is not a power of 2. The linear scaling
equation still worksfor thiscase, athoughthe shifting methodsdo not. Itisrecommended that an sBIT chunk
not be written for such images, since sBIT suggests that the original datarange was exactly 0..25 — 1.

9.2 Encoder gamma handling

See Gamma Tutoria (Chapter 13) if you aren’t already familiar with gamma issues.

Encoders capable of full-fledged color management [ICC] will perform more sophisticated cal culationsthan
those described here, and they may choose to use the iCCP chunk. Encoders that know that their image
samples conform to the SRGB specification [SRGB] should use the SRGB chunk and not perform gamma
handling. Otherwise, this section applies.
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The encoder has two gammarrelated decisions to make. First, it must decide how to transform whatever
image samples it has into the image samples that will go into the PNG file. Second, it must decide what
valueto writeinto the gAMA chunk.

Therulefor the second decisionis simply to write whatever value will cause a decoder to do what you want.
See Recommendations for Decoders: Decoder gamma handling (Section 10.5).

The first decision depends on the nature of the image samples and their precision. If the samples represent
light intensity in floating-point or high-precision integer form (perhaps from a computer image renderer),
then the encoder may perform “gamma encoding” (applying a power function with exponent less than 1)
before quantizing the data to integer values for output to the file. This resultsin fewer banding artifacts at
agiven sample depth, or allows smaller samples whileretaining the same visua quality. An intensity level
expressed as a floating-point value in the range 0 to 1 can be converted to afile image sample by

S ample — int ensityencodmg_exponent

integer_sample = ROUND (sample  (2Pitdepth _ 1))

If theintensity in theequation isthedesired display output intensity, then theencoding exponentisthegamma
value to be written to the file, by the definition of gAMA (See the gAMA chunk specification, Paragraph
4.2.2.1). Butif the intensity available to the encoder is the origina scene intensity, another transformation
may be needed. Sometimesthedisplayed image should have higher contrast than the original image; in other
words, the end-to-end transfer function from original sceneto display output should have an exponent greater
than 1. In thiscase,

ganma = encodi ng_exponent / end_t o_end_exponent

If you don’t know whether the conditionsunder whichtheoriginal image was captured (or cal cul ated) warrant
such acontrast change, you may assumethat display intensitiesare proportional to original sceneintensities;
in other words, the end-to-end exponent is 1, so gamma and the encoding exponent are equal .

If the image is being written to afile only, the encoder is free to choose the encoding exponent. Choosing
avalue that causes the gamma value in the gAMA chunk to be 1/2.2 is often a reasonabl e choice because it
minimizes the work for adecoder displaying on atypica video monitor.

Some image renderers may simultaneously write theimageto a PNG file and display it on-screen. The dis-
played pixels should be appropriate for the display system, so that the user sees a proper representation of
the intended scene.

If the renderer wants to write the displayed sample values to the PNG file, avoiding a separate gamma en-
coding step for file output, then the renderer should approximate the transfer function of the display system
by a power function, and write the reciprocal of the exponent into the gAMA chunk. Thiswill allow aPNG
decoder to reproduce what the file's originator saw on screen during rendering.

However, it is equally reasonable for arenderer to compute displayed pixels appropriate for the display de-
vice, and to perform separate gammaencoding for file storage, arranging to have avaluein the gAMA chunk
more appropriate to the future use of the image.



9. RECOMMENDATIONS FOR ENCODERS 43

Computer graphics renderers often do not perform gamma encoding, instead making sample values directly
proportional to scene light intensity. If the PNG encoder receives intensity samples that have already been
guantized into integers, thereis no point in doing gamma encoding on them; that would just result in further
lossof information. Theencoder should just writethe samplevaluesto the PNG file. Thisdoesnotimply that
thegAMA chunk should contain agammavalue of 1.0, because the desired end-to-end transfer functionfrom
sceneintensity to display output intensity isnot necessarily linear. The desired gammavalueis probably not
far from 1.0, however. It may depend on whether the scene being rendered is a daylight scene or an indoor
scene, etc.

When the sample values come directly from a piece of hardware, the correct gamma value can in principle
be inferred from the transfer function of the hardware and the lighting conditions of the scene. In the case
of video digitizers (“frame grabbers”), the samples are probably in the SRGB color space, because the SRGB
specification was designed to be compatiblewith video standards. Image scannersare less predictable. Their
output samples may be proportional to the input light intensity because CCD (charge coupled device) sen-
sors themselves are linear, or the scanner hardware may have aready applied a power function designed to
compensate for dot gain in subsequent printing (an exponent of about 0.57), or the scanner may have cor-
rected the samples for display on a monitor. The device documentation might describe the transformation
performed, or might describe the target display or printer for the image data (which might be configurable).
You can aso scan a calibrated target and use calibration software to determine the behavior of the device.
Remember that gamma rel ates file samples to desired display output, not to scanner input.

File format converters generally should not attempt to convert supplied images to a different gamma. Store
the datain the PNG file without conversion, and deduce the gammaval ue from information in the sourcefile
if possible. Gamma alteration at file conversion time causes re-quanti zation of the set of intensity levelsthat
are represented, introducing further roundoff error with little benefit. I1t's amost always better to just copy
the sample values intact from the input to the output file.

If the source file format describes the gamma characteristic of the image, afile format converter is strongly
encouraged to write a PNG gAMA chunk. Note that some file formats specify the exponent of the function
mapping file samples to display output rather than the other direction. If the source file's gamma value is
greater than 1.0, it is probably a display system exponent, and you should use its reciprocal for the PNG
gamma. If the source file format records the rel ationship between image samples and something other than
display output, then deducing the PNG gamma value will be more complex.

Regardless of how animage was originally created, if an encoder or file format converter knowsthat theim-
age has been displayed satisfactorily using adisplay system whose transfer function can be approximated by
apower functionwith exponent di spl ay _exponent , thentheimage can be marked as having the gamma
value:

ganma = 1 / displ ay_exponent

It's better to write agAMA chunk with an approximately right value than to omit the chunk and force PNG
decodersto guess at an appropriate gamma.

On the other hand, if the encoder has no way to infer the gamma value, then it is better to omit the gAMA
chunk entirely. If theimage gamma has to be guessed at, leave it to the decoder to do the guessing.
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Gamma does not apply to apha samples; aphaisaways represented linearly.

See a'so Recommendations for Decoders: Decoder gamma handling (Section 10.5).

9.3 Encoder color handling

See Color Tutoria (Chapter 14) if you aren’'t already familiar with color issues.

Encoders capable of full-fledged color management [ICC] will perform more sophisticated cal culationsthan
those described here, and they may chooseto usetheiCCP chunk. Encodersthat know that their image sam-
ples conform to the SRGB specification [SRGB] are strongly encouraged to usethe sSRGB chunk. Otherwise,
this section applies.

If it is possible for the encoder to determine the chromaticities of the source display primaries, or to make
a strong guess based on the origin of theimage or the hardware running it, then the encoder is strongly en-
couraged to output the cHRM chunk. If it does so, the gAMA chunk should a so be written; decoders can do
littlewith cHRM if gAMA is missing.

Video created with recent video equipment probably uses the CCIR 709 primaries and D65 white point
[ITU-R-BT709], which are:

R G B Wiite
X 0. 640 0. 300 0. 150 0. 3127
y 0. 330 0. 600 0. 060 0. 3290

An older but still very popular video standard is SMPTE-C [SMPTE-170M]:

R G B Wiite
X 0. 630 0. 310 0. 155 0. 3127
y 0. 340 0. 595 0. 070 0. 3290

The original NTSC color primaries have not been used in decades. Although you may still find the NTSC
numbers listed in standards documents, you won't find any images that actually use them.

Scanners that produce PNG files as output should insert the filter chromaticitiesinto a cHRM chunk.

In the case of hand-drawn or digitally edited images, you have to determine what monitor they were viewed
on when being produced. Many image editing programs allow you to specify what type of monitor you are
using. Thisis often because they are working in some device-independent space internally. Such programs
have enough information to write valid cHRM and gAMA chunks, and should do so automatically.

If the encoder is compiled as a portion of a computer image renderer that performs full-spectral rendering,
themonitor valuesthat were used to convert from theinternal device-independent color spaceto RGB should
bewritten into the cHRM chunk. Any colorsthat are outsidethe gamut of the chosen RGB device should be
clipped or otherwise constrained to be within the gamut; PNG does not store out-of-gamut colors.

If the computer image renderer performs calculations directly in device-dependent RGB space, a cHRM
chunk should not be written unless the scene description and rendering parameters have been adjusted to
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look good on a particular monitor. In that case, the data for that monitor (if known) should be used to con-
struct acHRM chunk.

There are often cases where an image's exact originsare unknown, particularly if it began life in some other
format. A few image formats store calibration information, which can be used to fill in the cHRM chunk.
For example, all PhotoCD images use the CCIR 709 primaries and D65 white point, so these values can
be written into the cHRM chunk when converting a PhotoCD file. PhotoCD also uses the SMPTE-170M
transfer function. (PhotoCD can store colors outside the RGB gamut, so the image data will require gamut
mapping beforewriting to PNG format.) TIFF 6.0 files can optionally store calibration information, which if
present should be used to construct thecHRM chunk. GIF and most other formats do not storeany calibration
information.

Itisnot recommended that fileformat convertersattempt to convert suppliedimagesto adifferent RGB color
space. Storethedatainthe PNG file without conversion, and record the source primary chromaticitiesif they
are known. Color space transformation at file conversion timeis a bad idea because of gamut mismatches
and rounding errors. Aswith gammaconversions, it’sbetter to store the datalosslessly and incur at most one
conversion when theimageisfinally displayed.

See a'so Recommendations for Decoders: Decoder color handling (Section 10.6).

9.4 Alphachannel creation

The aphachannel can be regarded either as a mask that temporarily hides transparent parts of the image, or
as ameans for constructing a non-rectangular image. In the first case, the color values of fully transparent
pixels should be preserved for future use. In the second case, the transparent pixels carry no useful data and
aresimply theretofill out the rectangular image arearequired by PNG. In thiscase, fully transparent pixels
should al be assigned the same color va ue for best compression.

Image authors should keep in mind the possibility that a decoder will ignore transparency control. Hence,
the colors assigned to transparent pixels should be reasonabl e background colors whenever feasible.

For applicationsthat do not require afull alphachannel, or cannot afford the price in compression efficiency,
the tRNS transparency chunk is also available.

If theimage has aknown background color, this color should be written in the bK GD chunk. Even decoders
that ignore transparency may use the bK GD color to fill unused screen area.

If the original image has premultiplied (also called “associated”) alpha data, convert it to PNG’'s non-
premultiplied format by dividing each sample value by the corresponding alphavalue, then multiplying by
the maximum value for theimage bit depth, and rounding to the nearest integer. In valid premultiplied data,
the sampl e values never exceed their corresponding al phavalues, so the result of the division should always
beintherange0to 1. If theaphavalueis zero, output black (zeroes).
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9.5 Suggested palettes

Suggested pal ettes can appear as SPLT chunksin any PNG file, or as a PLTE chunk in truecolor PNG files.
In either case, the suggested palette is not an essential part of the image data, but it may be used to present
the image on indexed-color display hardware. Suggested palettes are of no interest to viewers running on
truecolor hardware.

When sPLT isused to provide asuggested pal ette, it isrecommended that the encoder usethefrequency fields
toindicate therelative importance of the palette entries, rather than leave them all zero (meaning undefined).
The frequency values are most easily computed as “nearest neighbor” counts, that is, the approximate us-
age of each RGBA palette entry if no dithering is applied. (These counts will often be available for free as
a consequence of developing the suggested palette.)) Because the suggested palette includes transparency
information, it should be computed for the uncomposited image.

Even for indexed-color images, sSPLT can be used to define alternative reduced palettes for viewers that are
unable to display all the colors present in the PLTE chunk.

An older method for including asuggested pal ettein atruecol or PNG fileusesthe PLTE chunk. If thismethod
is used, the histogram (frequencies) should appear in a separate hIST chunk. Also, PLTE does not include
transparency information, so for images of color type 6 (truecolor with apha channel), it is recommended
that abKGD chunk appear and that the pal ette and histogram be computed with reference to theimage asiit
would appear after compositing against the specified background color. This definition is necessary to en-
sure that useful palette entries are generated for pixels having fractional aphavalues. The resulting palette
will probably be useful only to viewersthat present the image against the same background color. It isrec-
ommended that PNG editors delete or recompute the paetteif they alter or remove the bK GD chunk in an
image of color type 6.

For images of color type 2 (truecolor without alpha channel), it is recommended that PLTE and hIST be
computed with reference to the RGB data only, ignoring any transparent-color specification. If the file uses
transparency (has atRNS chunk), viewers can easily adapt the resulting pal ette for use with their intended
background color. They need only replace the palette entry closest to the tRNS color with their background
color (which may or may not match the file'sbKGD color, if any).

If PLTE appears without bkK GD in an image of color type 6, the circumstances under which the pal ette was
computed are unspecified.

For providing suggested paettes, sPLT is more flexible than PLTE in the following ways:

e With sPLT, there can be multiple suggested paettes. A decoder may choose an appropriate paette
based on name or number of entries.

e Inan RGBA (color type 6) PNG, PLTE represents a pal ette already composited against the bK GD
color, soit isuseful only for display against that background color. The sPLT chunk providesan un-
composited palette, which is useful for display against backgrounds of the decoder’s choice.

e SincesPLT isanoncritical chunk, a PNG editor can add or modify suggested pal ettes without being
forced to discard unknown unsafe-to-copy chunks.



9. RECOMMENDATIONS FOR ENCODERS 47

e WhereassPLT isallowed in PNG files of color types0, 3, and 4 (grayscale and indexed), PLTE cannot
be used to provide reduced pal ettes in these cases.

e Morethan 256 entries can appear in sPLT.

An encoder that uses sPLT may choose to write a PLTE/hIST suggested palette as well, for backward com-
patibility with decoders that do not recognize sPLT.

9.6 Filter sdlection

For images of color type 3 (indexed color), filter type 0 (None) is usually the most effective. Note that color
images with 256 or fewer colors should almost always be stored in indexed color format; truecolor format is
likely to be much larger.

Filter type O is also recommended for images of bit depthslessthan 8. For low-bit-depth grayscal e images,
it may be anet win to expand the image to 8-bit representation and apply filtering, but thisisrare.

For truecolor and grayscal e images, any of thefivefilters may prove the most effective. If an encoder usesa
fixed filter, the Paeth filter ismost likely to be the best.

For best compression of truecolor and grayscal e images, we recommend an adaptive filtering approach in
which afilter is chosen for each scanline. The following simple heuristic has performed well in early tests:
compute the output scanline using al five filters, and select the filter that gives the smallest sum of absolute
valuesof outputs. (Consider the output bytes as signed differencesfor thistest.) Thismethod usually outper-
forms any single fixed filter choice. However, it is likely that much better heuristics will be found as more
experienceis gained with PNG.

Filtering according to these recommendations is effective on interlaced as well as noninterlaced images.

9.7 Text chunk processing

A nonempty keyword must be provided for each text chunk (iTXt, tEXt, or zZTXt). The generic keyword
“Comment” can be used if no better description of the text isavailable. If a user-supplied keyword is used,
be sure to check that it meets the restrictions on keywords.

Text storedintEXt or zZT Xt chunksisexpected to usethe L atin-1 character set. Encodersshould providechar-
acter code remapping if thelocal system’scharacter set isnot Latin-1. Encoders wishing to store characters
not defined in Latin-1 should use the iTXt chunk.

Encoders should discourage the creation of singlelinesof text longer than 79 characters, in order to facilitate
easy reading.

Itisrecommended that text itemslessthan 1K (1024 bytes) in size should be output using uncompressed text
chunks. In particular, it isrecommended that the text associated with basic title and author keywords should

always be output with uncompressed chunks. Lengthy disclaimers, on the other hand, are ideal candidates
for compression.
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Placing large text chunks after the image data (after IDAT) can speed up image display in some situations,
since the decoder won't have to read over thetext to get to theimage data. But it is recommended that small
text chunks, such as the imagetitle, appear before IDAT.

9.8 Useof private chunks

Applicationscan use PNG private chunksto carry information that need not be understood by other applica-
tions. Such chunks must be given names with lowercase second | etters, to ensure that they can never conflict
with any future public chunk definition. Note, however, that there isno guarantee that some other application
will not use the same private chunk name. If you use a private chunk type, it is prudent to store additional
identifying information at the beginning of the chunk data.

Use an ancillary chunk type (lowercasefirst letter), not acritical chunk type, for al private chunksthat store
information that is not absolutely essential to view theimage. Creation of private critical chunksis discour-
aged because they render PNG files unportable. Such chunks should not be used in publicly available soft-
ware or files. If private critical chunks are essential for your application, it is recommended that one appear
near the start of thefile, so that a standard decoder need not read very far before discovering that it cannot
handle thefile.

If you want others outside your organization to understand a chunk type that you invent, contact the main-
tainers of the PNG specification to submit a proposed chunk name and definition for addition to the list of
special-purpose public chunks (see Additional chunk types, Section 4.4). Notethat a proposed public chunk
name (with uppercase second | etter) must not be used in publicly available software or files until registration
has been approved.

If an ancillary chunk containstextua information that might be of interest to a human user, you should not
create a special chunk type for it. Instead use atext chunk and define a suitable keyword. That way, the
information will be available to users not using your software.

Keywordsin text chunks should be reasonably self-explanatory, sincetheideaisto let other users figure out
what the chunk contains. If of general usefulness, new keywords can be registered with the maintainers of
the PNG specification. But it is permissible to use keywords without registering them first.

9.9 Privatetypeand method codes

This specification defines the meaning of only some of the possible values of some fields. For example,
only compression method 0 and filter types 0 through 4 are defined. Numbers greater than 127 must be used
when inventing experimental or private definitionsof valuesfor any of these fields. Numbers below 128 are
reserved for possiblefuture public extensions of this specification. Note that use of private type codes may
render afile unreadable by standard decoders. Such codes are strongly discouraged except for experimental
purposes, and should not appear in publicly available software or files.
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10 Recommendationsfor Decoders

This chapter gives some recommendations for decoder behavior. The only absolute requirement on a PNG
decoder is that it successfully read any file conforming to the format specified in the preceding chapters.
However, best resultswill usually be achieved by following these recommendations.

10.1 Error checking

To ensure early detection of common file-transfer problems, decoders should verify that al eight bytes of
the PNG file signature are correct. (See Rationale: PNG file signature, Section 12.12.) A decoder can have
additiona confidencein thefile' sintegrity if the next eight bytes are an IHDR chunk header with the correct
chunk length.

Unknown chunk types must be handled as described in Chunk naming conventions (Section 3.3). An un-
known chunk typeis not to be treated as an error unlessit isacritical chunk.

It is strongly recommended that decoders should verify the CRC on each chunk.

In some situationsit is desirable to check chunk headers (length and type code) before reading the chunk
dataand CRC. The chunk type can be checked for plausibility by seeing whether all four bytes are ASCII
letters (codes 65-90 and 97-122); note that this need be done only for unrecognized type codes. If the total
file sizeis known (from file system information, HT TP protocal, etc), the chunk length can be checked for
plausibility as well.

If CRCs are not checked, dropped/added data bytes or an erroneous chunk length can cause the decoder to
get out of step and misinterpret subsequent data as a chunk header. Verifying that the chunk type contains
lettersis an inexpensive way of providing early error detectionin this situation.

For known-length chunks such as IHDR, decoders should treat an unexpected chunk length as an error. Fu-
ture extensionsto this specification will not add new fields to existing chunks; instead, new chunk typeswill
be added to carry new information.

Unexpected valuesin fields of known chunks (for exampl e, an unexpected compression methodinthe IHDR
chunk) must be checked for and treated as errors. However, it is recommended that unexpected field values
betreated asfatal errors only in critical chunks. An unexpected valuein an ancillary chunk can be handled
by ignoring thewhole chunk as though it were an unknown chunk type. (Thisrecommendation assumes that
the chunk’s CRC has been verified. In decoders that do not check CRCs, it is safer to treat any unexpected
value as indicating a corrupted file.)

10.2 Pixel dimensions
Non-square pixel scan berepresented (see the pHY schunk), but viewersare not required to account for them;
aviewer can present any PNG file as though its pixels are square.

Conversely, viewers running on display hardware with non-square pixels are strongly encouraged to rescale
images for proper display.
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10.3 Truecolor image handling

To achieve PNG’s goal of universal interchangeability, decoders are required to accept al types of PNG im-
age: indexed-color, truecolor, and grayscale. Viewers running on indexed-color display hardware need to be
able to reduce truecol or images to indexed format for viewing. This processis usualy called “color quanti-
zation”.

A simple, fast way of doing thisis to reduce the image to afixed palette. Palettes with uniform color spac-
ing (“color cubes’) are usually used to minimize the per-pixel computation. For photograph-like images,
dithering is recommended to avoid ugly contours in what should be smooth gradients; however, dithering
introduces graininessthat can be objectionable.

The quality of rendering can be improved substantially by using a palette chosen specifically for theimage,
since a color cube usually has numerous entries that are unused in any particular image. This approach re-
quires more work, first in choosing the palette, and second in mapping individual pixelsto the closest avail-
able color. PNG alows the encoder to supply suggested palettes, but not all encoders will do so, and the
suggested pal ettes may be unsuitablein any case (they may have too many or too few colors). High-quality
viewers will therefore need to have a palette selection routine at hand. A large lookup table is usualy the
most feasible way of mapping individual pixelsto palette entries with adequate speed.

Numerousimplementations of color quantization are available. The PNG reference implementation, libpng,
includes code for the purpose.

10.4 Sampledepth rescaling

Decoders may wish to scale PNG data to a lesser sample depth (data precision) for display. For example,
16-bit data will need to be reduced to 8-bit depth for use on most present-day display hardware. Reduction
of 8-bit datato 5-bit depth is aso common.

The most accurate scaling is achieved by the linear equation
out put = ROUND(i nput * MAXOUTSAMPLE / MAXI NSAMPLE)
where

MAXINSAMPLE = 2sampledepth 1
MAXOUTSAMPLE = 2desired_sampledepth -1

A dightly less accurate conversion is achieved by simply shifting right by
sanpl edepth - desired_sanpl edept h places. For example, to reduce 16-bit samples to 8-hit,
one need only discard the low-order byte. In many situations the shift method is sufficiently accurate for
display purposes, and it is certainly much faster. (But if gamma correction is being done, sample rescaling
can be merged into the gamma correction lookup table, asisillustratedin Decoder gamma handling, Section
10.5.)
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When an sBIT chunk is present, the origina pre-PNG data can be recovered by shifting right to the sample
depth specified by sBIT. Note that linear scaling will not necessarily reproduce the original data, because
the encoder is not required to have used linear scaling to scale the dataup. However, the encoder isrequired
to have used a method that preserves the high-order bits, so shifting aways works. Thisisthe only case in
which shifting might be said to be more accurate than linear scaling.

When comparing pixel values to tRNS chunk values to detect transparent pixels, it is necessary to do the
comparison exactly. Therefore, transparent pixel detection must be done before reducing sample precision.

10.5 Decoder gamma handling

See Gamma Tutoria (Chapter 13) if you aren’t already familiar with gamma issues.

Decoders capabl e of full-fledged color management [ICC] will perform more sophisticated cal culationsthan
what is described here. Otherwise, this section applies.

For an image display program to produce correct tone reproduction, it is necessary to take into account the
relationship between file samples and display output, and the transfer function of the display system. This
can be done by calculating

sample = integer_sample/(2PitdePth _ 1 0)

display_output = sample(*0/ gamma)

di splay_i nput = inverse_di splay_transfer(di spl ay_out put)
framebuf _sanpl e = ROUND(di spl ay-i nput * MAX_FRAMEBUF_SAMPLE)

wherei nt eger _sanpl e isthe sample valuefromthefile, f r amebuf _sanpl e isthevalueto writeinto
the frame buffer, and MAX_FRAMEBUF_SAMPLE is the maximum value of a frame buffer sample (255 for
8-hit, 31 for 5-bit, etc). Thefirst lineconvertsaninteger sampleinto anormalized 0-to-1 floating-point val ue,
the second converts to a value proportional to the desired display output intensity, the third accountsfor the
display system’stransfer function, and the fourth converts to an integer frame buffer sample.

A step could beinserted between the second and third to adjust di spl ay _out put to account for the differ-
ence between the actual viewing conditionsand the reference viewing conditions. However, this adjustment
requires accounting for veiling glare, black mapping, and color appearance models, none of which can be
well approximated by power functions. The calculations are not described here. If viewing conditions are
ignored, the error will usually be small.

Typically, the display transfer function can be approximated by a power function with exponent
di spl ay_exponent , in which case the second and third lines can be merged into

display_input = sample(1'0 /(gammasxdisplay_exponent))

—5 ampl edecoding_exp onent

so asto perform only one power calculation. For color images, the entire calculation is performed separately
for R, G, and B va ues.



52 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

Thevalue of gamma can be taken directly from the gAMA chunk. Alternatively, an application may wishto
allow the user to adjust the appearance of the displayedimage by influencing the value of gamma. For exam-
ple, theuser could manually set aparameter called user _exponent that defaultsto 1.0, and theapplication
could set

ganma = gamma fromfile / user _exponent
decodi ng_exponent = 1.0 / (ganma * di spl ay_exponent)
= user _exponent / (gamua_fromfile * display_exponent)

The user would set user _exponent greater than 1 to darken the mid-level tones, or lessthan 1 to lighten
them.

It isnot necessary to perform transcendental math for every pixel. Instead, compute alookuptablethat gives
the correct output value for every possible sample value. This requires only 256 calculations per image (for
8-bit accuracy), not one or three calculations per pixel. For an indexed-color image, a one-time correction
of the palette is sufficient, unless the image uses transparency and is being displayed against a nonuniform
background.

If floating-point cal culations are not possible, gamma correction tables can be computed using integer arith-
metic and a precomputed table of logarithms. Example code appears in the “ Extensionsto the PNG Specifi-
cation” document [PNG-EXTENSIONS].

When theincomingimage hasunknowngamma (gAMA, sRGB, and i CCP all absent), choosealikely default
gamma value, but alow the user to select a new one if the result proves too dark or too light. The default
gamma can depend on other knowledge about the image, like whether it came from the Internet or from the
local system.

In practice, it is often difficult to determine what vaue of the display exponent should be used. In systems
with no built-ingammacorrection, thedisplay exponentisdetermined entirely by the CRT (cathoderay tube).
Assumea CRT exponent of 2.2 unlessdetail ed calibration measurements of thisparticular CRT are available.

Many modern frame buffers have lookup tables that are used to perform gamma correction, and on these
systems the display exponent value should be the exponent of the lookup table and CRT combined. You
may not be able to find out what the lookup table contains from within an image viewer application, so you
may haveto ask the user what the display system’s exponent is. Unfortunately, different manufacturers use
different ways of specifying what should go into the lookup table, so interpretation of the system “gamma’
valueis system-dependent. The Gamma Tutorial (Chapter 13) gives some examples.

Theresponseof red displaysisactualy more complex than can be described by a single number (the display
exponent). If actual measurements of the monitor’slight output as a function of voltageinput are available,
the third and fourth lines of the computation above can be replaced by a lookup in these measurements, to
find the actua frame buffer value that most nearly givesthe desired brightness.

10.6 Decoder color handling

See Color Tutoria (Chapter 14) if you aren’'t already familiar with color issues.
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In many cases, decoders will treat image data in PNG files as device-dependent RGB data and display it
without modification (except for appropriate gamma correction). This provides the fastest display of PNG
images. But unless the viewer uses exactly the same display hardware as the origina image author used,
the colorswill not be exactly the same as the origina author saw, particularly for darker or near-neutra col-
ors. The cHRM chunk providesinformation that allows closer color matching than that provided by gamma
correction alone.

Decoders can use the cHRM data to transform theimage datafrom RGB to CIE XY Z and thence into a per-
ceptualy linear color space such as CIE LAB. They can then partition the colors to generate an optimal
pal ette, because the geometric distance between two colorsin CIE LAB is strongly related to how different
those colors appear (unlike, for example, RGB or XY Z spaces). The resulting palette of colors, once trans-
formed back into RGB color space, could be used for display or written into a PLTE chunk.

Decodersthat are part of image processing applicationsmight al so transform image datainto CIE LAB space
for analysis.

In applicationswhere color fidelity is critical, such as product design, scientific visualization, medicine, ar-
chitecture, or advertising, decoders can transform theimage datafrom source RGB to the display RGB space
of the monitor used to view theimage. Thisinvolves cal culating the matrix to go from source RGB to XY Z
and the matrix to go from XY Z to display RGB, then combining them to producethe overall transformation.
The decoder is responsiblefor implementing gamut mapping.

Decoders running on platforms that have a Color Management System (CMS) can pass the image data,
gAMA, and cHRM valuesto the CM S for display or further processing.

Decoders that provide color printing facilities can use the facilitiesin Level 2 PostScript to specify image
datain calibrated RGB space or in a device-independent color space such as XY Z. Thiswill provide bet-
ter color fidelity than a simple RGB to CMYK conversion. The PostScript Language Reference manual
[POSTSCRIPT] gives examples. Such decoders are responsiblefor implementing gamut mapping between
source RGB (specified in the cHRM chunk) and the target printer. The PostScript interpreter isthen respon-
siblefor producing the required colors.

Decoders can use the cHRM data to calculate an accurate grayscal e representation of a color image. Con-
version from RGB to gray is simply a case of calculating the'Y (luminance) component of XY Z, whichis
aweighted sum of the R, G, and B values. The weights depend on the monitor type, i.e., the valuesin the
cHRM chunk. Decoders may wishto do thisfor PNG fileswith no cHRM chunk. In that case, areasonable
default would be the CCIR 709 primaries [I TU-R-BT709]. Do not use the original NTSC primaries, unless
you really do have an image col or-balanced for such amonitor. Few monitorsever used the NTSC primaries,
so such images are probably nonexistent these days.

10.7 Background color

The background color given by bK GD will typically be used to fill unused screen space around theimage, as
well as any transparent pixelswithintheimage. (Thus, bKGD isvalid and useful even when the image does
not use transparency.) If no bKGD chunk is present, the viewer will need to make its own decision about a
suitable background color.
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Viewers that have a specific background against which to present the image (such as Web browsers) should
ignore the bK GD chunk, in effect overriding bkK GD with their preferred background color or background
image.

The background color given by bKGD is not to be considered transparent, even if it happens to match the
color given by tRNS (or, in the case of an indexed-color image, refers to a palette index that is marked as
transparent by tRNS). Otherwise one would have to imagine something “behind the background” to com-
positeagainst. The background color is either used as background or ignored; it isnot an intermediate layer
between the PNG image and some other background.

Indeed, it will be common that bk GD and tRN S specify the same col or, sincethen adecoder that doesnot im-
plement transparency processing will givethe intended display, at |east when no partialy-transparent pixels
are present.

10.8 Alphachannel processing

Inthemost general case, thealphachannel can beused to compositeaforeground image agai nst abackground
image; the PNG file defines the foreground image and the transparency mask, but not the background image.
Decoders are not required to support thismost general case. It is expected that most will be able to support
compositing against a single background color, however.

The equation for computing a composited sample valueis
out put = alpha * foreground + (1-al pha) * background

where the alpha value and the input and output sample values are expressed as fractions in the range 0 to
1. This computation should be performed with intensity samples (not gamma-encoded samples). For color
images, the computation is done separately for R, G, and B samples.

Thefollowing codeillustratesthe general case of compositing aforeground image over abackgroundimage.
It assumes that you have the original pixel data available for the background image, and that output isto a
frame buffer for display. Other variants are possi bl e; see the comments below the code. The code allowsthe
sample depths and gamma val ues of foreground and background images to be different, and not necessarily
suited to the display system. Don’'t assume everything is the same without checking.

This codeis standard C, with line numbers added for reference in the comments below:

01 int foreground[4]; /* image pixel: R G B, A*/
02 int background[3]; /* background pixel: R G B */
03 int fbpix[3]; [* frame buffer pixel */

04 int fg_.maxsanpl e; /* foreground nmax sanple */

05 int bg_-maxsanpl e; /* background nmax sample */

06 int fb_maxsanpl e; [* frame buffer max sanple */

07 int ialpha;
08 float al pha, conpal pha;
09 float ganfg, linfg, ganbg, |inbg, conppix, gcvideo;
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10
11
12

13

14

15
16

17
18
19
20
21
22
23
24

25
26

27

28

/* Get max sanple values in data and frame buffer */
fg_maxsanple = (1 << fg_sanpl edepth) - 1;
bg_-maxsanple = (1 << bg.sanpl edepth) - 1;

f b_maxsanpl e (1 << franme_buffer _sanpl e.depth) - 1;
/*

* CGet integer version of alpha.
Check for opaque and transparent special cases;
no conpositing needed if so.

*

* We show t he whol e gamma decode/ correct process in
* floating point, but it would nore likely be done
* with | ookup tables.

*/

al pha = foreground[ 3];

if (ialpha == 0) {
/*
* Foreground image i s transparent here.
* | f the background inmage is already in the frane
* puffer, there is nothing to do.

*/
} else if (ialpha == fg.naxsanple) {
/*
* Copy foreground pixel to frame buffer.
*/
for (i =0; i <3; i++) {
ganfg = (float) foreground[i] / fg_-maxsanpl e;
linfg = pow(ganfg, 1.0/fggamma);
conppi x = linfg;
gcvi deo = pow( conmppi x, 1.0/ di spl ay_exponent);
fbpix[i] = (int) (gcvideo * fb_maxsanple + 0.5);
}
} else {
/*
* Conpositing i s necessary.
* Get floating-point alpha and its conpl enent.
* Note: alpha is always |inear; gamma does not
* affect it.
*/
al pha = (float) ialpha / fg.maxsanpl e;
conpal pha = 1.0 - al pha;
for (i =0; i <3; i++) {
/*
* Convert foreground and background to
* floating point, then undo gama encodi ng.
*/
ganfg = (float) foreground[i] / fg_-maxsanpl e;
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29 linfg = powmganfg, 1.0/fg.gamm);
30 ganbg = (float) background[i] / bg_-maxsanpl e;
31 i nbg = pow(ganbg, 1.0/bggamma);
/*
* Conposite.
*/
32 conppix = linfg * alpha + Iinbg * conpal pha;
/*
* Gamma correct for display.
* Convert to integer frane buffer pixel.
*/
33 gcvi deo = pow( conmppi x, 1.0/ di spl ay_exponent);
34 fbpix[i] = (int) (gcvideo * fb_maxsanple + 0.5);
35 }
36 }
Variations:

1. If output is to another PNG image file instead of a frame buffer, lines 21, 22, 33, and 34 should be

changed to be something like:

/*

* Gamma encode for storage in output file.

* Convert to integer sanple val ue.

*/

ganout = pow(conppi x, outfile_ganma);

outpix[i] = (int) (ganpbut * out _naxsanple + 0.5);

Also, it becomes necessary to process background pixelswhen alphais zero, rather than just skipping
pixels. Thus, line 15 will need to be replaced by copies of lines 17-23, but processing background
instead of foreground pixel values.

. If the sample depths of the output file, foreground file, and background file are al the same, and the

three gamma val ues al so match, then the no-compositing code in lines 14—23 reduces to nothing more
than copying pixel values from the input file to the output file if alphaisone, or copying pixel values
from background to output file if aphaiszero. Since aphaistypically either zero or one for the vast
majority of pixelsin an image, thisis a great savings. No gamma computations are needed for most
pixels.

. When the sampl e depths and gamma va ues all match, it may appear attractive to skip the gamma de-

coding and encoding (lines 2831, 33—34) and just perform line 32 using gamma-encoded sampleval-
ues. Although this doesn’t hurt image quality too badly, the time savings are small if alphavalues of
zero and one are special-cased as recommended here.

. If the original pixel values of the background image are no longer available, only processed frame

buffer pixels left by display of the background image, then lines 30 and 31 need to extract intensity
from the frame buffer pixel values using code like:
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/*

* Convert frane buffer value into intensity sanple.
*/

gcvideo = (float) fbpix[i] / fb_nmaxsanple;

i nbg = pow(gcvi deo, display_exponent);

However, someroundoff error can result, soit isbetter to have theoriginal background pixelsavailable
if at al possible.

5. Notethat lines 18-22 are performing exactly the same gamma computation that isdone when no a pha
channel ispresent. So, if you handletheno-al phacase withalookuptable, you can usethe samelookup
table here. Lines 28-31 and 33—-34 can aso be donewith (different) lookup tables.

6. Of course, everything here can be done in integer arithmetic. Just be careful to maintain sufficient
precision al the way through.

Note: in floating-point arithmetic, no overflow or underflow checks are needed, because the input sample
values are guaranteed to be between 0 and 1, and compositing aways yields a result that isin between the
input values (inclusive). With integer arithmetic, some roundoff-error analysis might be needed to guarantee
no overflow or underflow.

When displaying a PNG image with full alpha channdl, it is important to be able to composite the image
against some background, even if it's only black. Ignoring the apha channel will cause PNG images that
have been converted from an associ ated-al pharepresentation to look wrong. (Of course, if the alphachannel
isaseparate transparency mask, then ignoring alphaisauseful option: it allowsthe hidden parts of theimage
to be recovered.)

Evenif the decoder author doesnot wish toimplement true compositinglogic, itissimpleto deal withimages
that contain only zero and one alphavalues. (Thisisimplicitly truefor grayscal e and truecolor PNG filesthat
use atRNS chunk; for indexed-color PNG files, it is easy to check whether tRNS contains any values other
than 0 and 255.) In this simple case, transparent pixels are replaced by the background color, while others
are unchanged.

If adecoder contains only this much transparency capability, it should deal with afull alphachannel by con-
vertingit to abinary a phachannel, either by treating all nonzero a phava uesasfully opague or by dithering.
Neither approach will yield very good results for images converted from associated-alphaformats, but it's
better than doing nothing. Dithering full alphato binary aphaisvery much likedithering grayscale to black-
and-white, except that all fully transparent and fully opaque pixels should be left unchanged by the dither.

10.9 Progressive display

When receiving images over slow transmission links, decoders can improve perceived performance by dis-
playing interlaced images progressively. This means that as each passis received, an approximation to the
completeimageis displayed based on the datareceived so far. Onesimpleyet pleasing effect can be obtained
by expanding each received pixel to fill arectangle covering the yet-to-be-transmitted pixel positionsbelow
and to theright of the received pixel. This process can be described by the following pseudocode:
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StartingRow [1..7] = {0, O, 4, 0, 2, 0, 1}
StartingCol [1..7] = {0, 4, 0, 2, O, 1, 0}
Rowl ncrement [1..7] = {8, 8, 8, 4, 4, 2, 2}
Col Increment [1..7] = {8, 8, 4, 4, 2, 2, 1}
Bl ock Height [1..7] = {8, 8 4, 4, 2, 2, 1}
Block Wdth [1..7] = {8 4 4, 2, 2, 1, 1}
pass := 1
whil e pass <=7
begi n

row : = Starti ng_.Row pass]

whi |l e row < hei ght

begi n

col := StartingCol[pass]

while col < width
begi n
visit (row, col,
m n (Bl ock_Hei ght[ pass], height - row),
mn (Bl ock_Wdth[pass], width - col))

col := col + Col _.Increnent[ pass]
end
row : = row + Rowl ncrenent [ pass]
end
pass := pass + 1

end

Here, thefunctionvi si t (r ow, col umm, hei ght, wi dt h) obtainsthenext transmitted pixel and paints
arectangleof the specified height and width, whoseupper-1eft corner isat the specified row and column, using
the color indicated by the pixel. Note that row and column are measured from 0,0 at the upper |eft corner.

If the decoder is merging the received image with a background image, it may be more convenient just to
paint the received pixel positions; that is, thevi si t () function setsonly the pixel at the specified row and
column, not the whole rectangle. This produces a “fade-in” effect as the new image gradually replaces the
old. An advantage of thisapproach isthat proper aphaor transparency processing can be done as each pixel
is replaced. Painting a rectangle as described above will overwrite background-image pixels that may be
needed | ater, if the pixelseventual ly received for those positionsturn out to be wholly or partially transparent.
Of course, thisisa problem only if the background image is not stored anywhere offscreen.

10.10 Suggested-paletteand histogram usage

For viewers running on indexed-col or hardware trying to display atruecolor image, or an indexed-color im-
age whose palette is too large for the framebuffer, the encoder may have provided one or more suggested
palettesin sPLT chunks. If one of them is found to be suitable, based on its size and perhaps its name, the
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decoder can use that palette. Note that suggested palettes with a sample depth different from what the de-
coder needs can be converted using sample depth rescaling (See Recommendations for Decoders. Sample
depth rescaling, Section 10.4).

When the background is a solid color, the decoder should composite the image and the suggested palette
against that color, then quantize the resultingimage to theresulting RGB pal ette. When theimage usestrans-
parency and the background is not a solid color, no suggested palette is likely to be useful.

For truecolor images, a suggested palette might also be provided in aPLTE chunk. If theimage hasatRNS
chunk and the background isasolid color, the viewer can adapt the suggested pal etted for use with this back-
ground color. To do this, replace the palette entry closest to the tRNS color with the background color, or
just add a palette entry for the background color if the viewer can handle more colors than there are palette
entries.

For images of color type 6 (truecolor with alpha channel), any PLTE chunk should have been designed for
display of theimage against auniform background of the color specified by bkK GD. Viewersshould probably
ignorethe paletteif they intend to use a different background, or if the bK GD chunk ismissing. Viewers can
use the suggested palette for display against a different background than it was intended for, but the results
may not be very good.

If theviewer presents atransparent truecol or image against a background that is more complex than asingle
color, it is unlikely that the PLTE chunk will be optimal for the composite image. In thiscase it is best to
perform atruecol or compositing step on thetruecol or PNG image and backgroundimage, then col or-quantize
the resulting image.

In truecolor PNG files, if both PLTE and sPLT appear, the decoder can choose from among the pal ettes sug-
gested by both, bearing in mind the different transparency semantics mentioned above.

The frequenciesin sPLT and hIST chunks are useful when the viewer cannot provide as many colorsas are
used inthe palette. If theviewer isshort only afew colors, it isusually adequateto drop the least-used colors
from the palette. To reduce the number of colors substantialy, it'sbest to choose entirely new representative
colors, rather than trying to use a subset of the existing palette. This amounts to performing a new color
guanti zation step; however, the existing pal ette and frequencies can be used as the input data, thus avoiding
a scan of theimage data.

If no suggested paettes are provided, a decoder can develop its own, at the cost of an extra pass over the
image data. Alternatively, a default pal ette (probably a color cube) can be used.

See also Recommendations for Encoders. Suggested pal ettes (Section 9.5).

10.11 Text chunk processing
If practical, decoders should have away to display to the user dl text chunksfound in the file. Evenif the
decoder does not recognize a particular text keyword, the user might be able to understand it.

TextinthetEXt and zT Xt chunksis not supposed to contain any characters outsidethe SO 8859-1 (L atin-1)
character set (that is, no codes 0-31 or 127-159), except for the newlinecharacter (decimal 10). But decoders
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might encounter such characters anyway. Some of these characters can be safely displayed (e.g., TAB, FF,
and CR, decimal 9, 12, and 13, respectively), but others, especialy the ESC character (decima 27), could
pose a security hazard because unexpected actionsmay be taken by display hardware or software. To prevent
such hazards, decoders should not attempt to directly display any non-L atin-1 characters (except for newline
and perhaps TAB, FF, CR) encountered in atEXt or zZT Xt chunk. Instead, ignore them or display themin a
visible notation such as “\ nnn”. See Security considerations (Section 8.5).

Even though encoders are supposed to represent newlinesas LF, it isrecommended that decoders not rely on
this; it’sbest to recognize all the common newline combinations (CR, LF, and CR-LF) and display each asa
singlenewline. TAB can be expanded to the proper number of spaces needed to arrive at a column multiple
of 8.

Decoders running on systems with non-L atin-1 character set encoding should provide character code remap-
ping so that Latin-1 characters are displayed correctly. Some systems may not provide al the characters
defined in Latin-1. Mapping unavailable characters to a visible notation such as “\ nnn” isagood fallback.
In particular, character codes 127255 should be displayed only if they are printable characters on the de-
coding system. Some systems may interpret such codes as control characters; for security, decoders running
on such systems should not display such characters literally.

Decoders should be prepared to display text chunksthat contain any number of printing characters between
newline characters, even though encoders are encouraged to avoid creating lines in excess of 79 characters.

11 Glossary

ab

Exponentiation; a raised to the power b. Note that zero raised to any positive power is zero.

Alpha
A value representing a pixel’s degree of transparency. The more transparent a pixel, the less it
hides the background against which the image is presented. In PNG, alphais really the degree of
opacity: zero alpharepresentsacompletely transparent pixel, maximum al pharepresentsacompl etely
opaque pixel. But most people refer to apha as providing transparency information, not opacity
information, and we continue that custom here.

Ancillary chunk
A chunk that provides additional information. A decoder can still produce a meaningful image,
though not necessarily the best possibleimage, without processing the chunk.

Bit depth
The number of bits per paette index (in indexed-color PNGs) or per sample (in other color
types). Thisisthe same value that appearsin IHDR.

Byte
Eight bits; also called an octet.
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Channel
The set of all samples of the same kind within an image; for example, al the blue samples in a
truecolor image. (The term “component” is aso used, but not in this specification.) A sampleisthe
intersection of a channel and apixel.

Chromaticity
A pair of values x, y that precisely specify a color, except for the brightnessinformation.

Chunk
A section of a PNG file. Each chunk has a type indicated by its chunk type name. Most types
of chunks also include some data. The format and meaning of the data within the chunk are
determined by the type name.

CIE
International Commission on Illumination (Commission Internationale de I’ Eclairage).

CIEXYZ
A device-independent color space in which each component is the sum of a weighted power
distribution over the visible spectrum. The'Y component is luminence (see below).

CIELAB
A perceptualy linear color space.

Composite
As a verb, to form an image by merging a foreground image and a background image, using
transparency information to determine where the background should be visible. The foreground
imageis said to be “composited against” the background.

CRC
Cyclic Redundancy Check. A CRC is a type of check value designed to catch most transmis-
sion errors. A decoder calculates the CRC for the received data and compares it to the CRC that the
encoder calculated, which is appended to the data. A mismatch indicates that the data was corrupted
intransit.

Critical chunk
A chunk that must be understood and processed by the decoder in order to produce a meaning-
ful image from aPNG file.

CRT
Cathode Ray Tube: acommon type of computer display hardware.

Datastream
A sequence of bytes. This term is used rather than “file” to describe a byte sequence that is
only a portion of a file. We aso use it to emphasize that a PNG image might be generated and
consumed “on-the-fly”, never appearing in a stored file at all.

Deflate
The name of the compression algorithm used in standard PNG files, as well as in zip, gzip,
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pkzip, and other compression programs. Deflate is a member of the LZ77 family of compression
methods.

Filter
A transformation applied to image data in hopes of improving its compressibility. PNG uses
only lossless (reversible) filter algorithms.

Frame buffer
The fina digita storage area for the image shown by a computer display. Software causes an
image to appear onscreen by loading it into the frame buffer.

Gamma
Informally, a measure of the brightness of mid-level tones in an image. Outside this specifica-
tion, theterm “gamma’ is often used as the exponent of a power function that is the transfer function
of any stage(s) of an imaging pipeline:

output = input&™m?

where both input and output are scaled to the range 0 to 1. Within this specification, gamma refers
specifically to the function from display output to image samples.

Grayscale
An image representation in which each pixel is represented by a single sample value represent-
ing overall luminance (on a scale from black to white). PNG a so permits an a phasampleto be stored
for each pixel of agrayscaleimage.

I ndexed color
An image representation in which each pixd is represented by a single sample that is an index
into a palette or lookup table. The selected palette entry defines the actual color of the pixel.

Intensity
Power per unit area of light entering or leaving a surface. It is often normalized to the range O
to 1 by dividing by a maximum intensity.

L ossless compression
Any method of data compression that guarantees the original data can be reconstructed exactly,
bit-for-bit.

L ossy compression
Any method of data compression that reconstructs the original data approximately, rather than
exactly.

LSB
Least Significant Byte of a multi-byte value.

Luminance
Perceived brightness, or grayscale level, of a color. Luminance and chromaticity together fully
define a perceived color.
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LUT
Look Up Table. In generd, a table used to transform data. In frame buffer hardware, a LUT
can be used to map indexed-color pixels into a selected set of truecolor values, or to perform
gamma correction. In software, a LUT can be used as a fast way of implementing any one-variable
mathematical function.

M SB
Most Significant Byte of a multi-byte value.

Palette
The set of colors available in an indexed-color image. In PNG, a palette is an array of colors
defined by red, green, and blue samples. (Alphavalues can aso be defined for palette entries, viathe
tRNS chunk.)

Pixel
The information stored for a single grid point in the image. The complete image is a rectangu-
lar array of pixels.

PNG editor
A program that modifies a PNG file and preserves ancillary information, including chunks that
it does not recognize. Such a program must obey the rules given in Chunk Ordering Rules (Chapter
7.

Sample
A single number in the image data; for example, the red value of a pixel. A pixe is composed
of one or more samples. When discussing physical datalayout (in particular, in Image layout, Section
2.3), we use “sampl€” to mean a humber stored in the image array. It would be more precise but
much less readable to say “sample or paette index” in that context. Elsewhere in the specification,
“sample” means a color value or dphavaue. In the indexed-color case, these are pal ette entries not
pa ette indexes.

Sample depth
The precision, in bits, of color values and alpha values. In indexed-color PNGs the sample
depth isalways 8 by definition of the PLTE chunk. In other color typesit is the same as the bit depth.

Scanline
One horizontal row of pixelswithin an image.

Truecolor
An image representation in which pixel colors are defined by storing three samples for each
pixel, representing red, green, and blueintensitiesrespectively. PNG also permits an apha sample to
be stored for each pixel of atruecolor image.

White point
The chromaticity of a computer display’snomina whitevalue.
Zlib
A particular format for data that has been compressed using deflate-style compression. Also
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the name of alibrary implementing this method. PNG implementations need not use the zlib library,
but they must conform to itsformat for compressed data.

12 Appendix: Rationale

(Thisappendix is not part of the formal PNG specification.)

Thisappendix givesthe reasoning behind some of thedesign decisionsin PNG. Many of thesedecisionswere
the subject of considerable debate. The authors freely admit that another group might have made different
decisions; however, we believe that our choices are defensible and consistent.

121 Why anew fileformat?

Does the world really need yet another graphics format? We believe so. GIF isno longer freely usable, but
no other commonly used format can directly replaceit, asis discussed in more detail below. We might have
used an adaptation of an existing format, for example GIF with an unpatented compression scheme. But this
would require new code anyway; it would not be all that much easier to implement than a whole new file
format. (PNG is designed to be simple to implement, with the exception of the compression engine, which
would be needed in any case.) We fed that thisisan excellent opportunity to design anew format that fixes
some of the known limitationsof GIF.

12.2 Why thesefeatures?

Thefeatures chosenfor PNG areintended to addressthe needs of applicationsthat previously used the specia
strengths of GIF. In particular, GIF iswell adapted for online communications because of its streamability
and progressive display capability. PNG shares those attributes.

We have a so addressed some of the widely known shortcomings of GIF. In particular, PNG supports true-
color images. We know of no widely used image format that |osslessly compresses truecol or images as ef-
fectively as PNG does. We hope that PNG will make use of truecol or images more practical and widespread.

Someform of transparency control isdesirablefor applicationsin which imagesare displayed against aback-
ground or together with other images. GIF provided asimpletransparent-col or specification for this purpose.
PNG supportsafull a phachannel aswell astransparent-col or specifications. Thisallowsboth highly flexible
transparency and compression efficiency.

Robustnessagainst transmissionerrors has been animportant consideration. For example, imagestransferred
across the Internet are often mistakenly processed as text, leading to file corruption. PNG is designed so that
such errors can be detected quickly and reliably.

PNG has been expressly designed not to be completely dependent on a single compression technique. Al-
though deflate/inflate compression is mentioned in this document, PNG would still exist without it.
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12.3 Why not these features?

Some features have been deliberately omitted from PNG. These choices were made to simplify implemen-
tation of PNG, promote portability and interchangeability, and make the format as simple and fool proof as
possiblefor users. In particular:

e Thereisno uncompressed variant of PNG. It is possibleto store uncompressed databy using only un-
compressed deflate blocks (afeature normally used to guaranteethat defl ate does not makeincompress-
ibledatamuchlarger). However, PNG software must support full deflate/inflate; any softwarethat does
not isnot compliant with the PNG standard. Thetwo most important features of PNG—portability and
compressi on—are absol ute requirements for online applications, and users demand them. Failure to
support full deflate/inflate compromises both of these abjectives.

e Thereisnolossy compressionin PNG. Existing formats such as JFIF (JPEG File Interchange Format)
aready handle lossy compression well. Furthermore, available lossy compression methods, e.g., the
JPEG (Joint Photographic Experts Group) algorithm, are far from fool proof—a poor choice of quality
level can ruin animage. To avoid user confusionand unintentional lossof information, wefeel itisbest
to keep lossy and losslessformats strictly separate. Also, lossy compressionis complex toimplement.
Adding JPEG support to a PNG decoder might significantly increase its size, causing some decoders
to omit support for the feature, which would erode our goal of interchangeability.

e Thereisno support for CMYK (Cyan, Magenta, Yellow, blacK) or other unusual color spaces. Again,
thisisin the name of promoting portability. CMYK, in particular, is far too device-dependent to be
useful as a portableimage representation.

e Thereisno standard chunk for thumbnail views of images. In discussionswith software vendors who
use thumbnailsin their products, it has become clear that most would not use a “ standard” thumbnail
chunk. For one thing, every vendor has a different idea of what the dimensionsand characteristics of
athumbnail ought to be. Also, some vendors keep thumbnailsin separate files to accommodate varied
image formats; they are not going to stop doing that simply because of athumbnail chunk in one new
format. Proprietary chunks containing vendor-specific thumbnails appear to be more practical than a
common thumbnail format.

It isworth noting that private extensionsto PNG could easily add these features. We will not, however, in-
clude them as part of the basic PNG standard.

PNG also does not support multipleimagesin onefile. Thisrestrictionisareflection of thereality that many
applicationsdo not need and will not support multipleimages per file. In any case, singleimages areafunda-
mentally different sort of object from sequences of images. Rather than make fal se promises of interchange-
ability, we have drawn a clear distinction between single-image and multi-image formats. PNG isasingle-
image format. (But see Multiple-image extension, Section 8.4.)
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12.4 Why not use format X?

We considered numerous existing formats before deciding to develop PNG. None could meet the require-
ments that we felt were important for PNG.

GIF is no longer suitable as a universal standard because of legal entanglements. Although just replacing
GIF scompression method would avoid that problem, GIF does not support truecol or images, a phachannel s,
or gamma correction. The spec has more subtle problems too. Only a small subset of the GIF89 spec is
actually portable across a variety of implementations, but there is no codification of the most portable part
of the spec.

TIFF (the Tagged Image File Format) is far too complex to meet our goals of simplicity and interchange-
ability. Defining a TIFF subset would meet that objection, but would frustrate users making the reasonable
assumption that afile saved as TIFF from their existing software would load into a program supporting our
flavor of TIFF. Furthermore, TIFF isnot designed for stream processing, has no provision for progressive
display, and does not currently provide any good, legally unencumbered, 10ssless compression method.

|FF has & so been suggested, but is not suitablein detail: availableimage representations are too machine-
specific or not adequately compressed. The overall chunk structure of IFF isa useful concept that PNG has
liberally borrowed from, but we did not attempt to be bit-for-bit compatible with IFF chunk structure. Again
thisis due to detailed issues, notably the fact that IFF FORMSs are not designed to be serialy writable.

Lossless JPEG is not suitable because it does not provide for the storage of indexed-color images. Further-
more, its lossless truecolor compression is often inferior to that of PNG.

125 Byteorder

It has been asked why PNG uses network byte order. We have selected one byte ordering and used it consis-
tently. Which order in particular is of littlerelevance, but network byte order has the advantage that routines
to convert to and from it are aready available on any platform that supports TCP/IP networking, including
al PC platforms. The functionsare trivial and will beincluded in the reference implementation.

12.6 Interlacing

PNG’s two-dimensional interlacing scheme is more complex to implement than GIF s line-wiseinterlacing.
It also costsalittlemorein file size. However, it yieldsan initial image eight times faster than GIF (thefirst
pass transmits only 1/64th of the pixels, compared to 1/8th for GIF). Although thisinitial image is coarse,
it is useful in many situations. For example, if the image is a World Wide Web imagemap that the user has
seen before, PNG'sfirst passis often enough to determine whereto click. The PNG scheme a so looks better
than GIF's, because horizontal and vertical resolution never differ by more than afactor of two; this avoids
the odd “ stretched” ook seen when interlaced GlFs arefilled in by replicating scanlines. Preliminary results
show that small text in an interlaced PNG image istypically readable about twice as fast asin an equivalent
GIF, i.e, after PNG’'sfifth pass or 25% of the image data, instead of after GIF's third pass or 50%. Thisis
again due to PNG’s more ba anced increase in resolution.
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12.7 Why gamma?

It might seem natural to standardize on storing sample values proportiona to display output intensity (that
is, have gamma of 1.0). But in fact, it is common for images to have agamma of lessthan 1. There are three
good reasons for this:

¢ CRTshaveatransfer functionwithan exponent of 2.2, and video signa saredesigned to be sent directly
to CRTs. Therefore, images obtained by frame-grabbing video already have agamma of 1/2.2.

e Thehuman eye hasanonlinear responseto intensity, so linear encoding of samples either wastes sam-
ple codesin bright areas of theimage, or providestoo few sample codesto avoid banding artifactsin
dark areas of the image, or both. At least 12 bits per sample are needed to avoid visible artifacts in
linear encoding with a100:1 image intensity range. Animage gammaintherange 0.3to 0.5 allocates
samplevauesinaway that roughly correspondsto the eye' sresponse, so that 8 bits/sampleare enough
to avoid artifacts caused by insufficient sample precision in amost al images. This makes “gamma
encoding” amuch better way of storing digital images than the simpler linear encoding.

e Many images are created on PCs or workstationswith no gamma correction hardware and no software
willingto provide gamma.correction either. In these cases, theimages have had their lightingand col or
chosen to look best on this platform—they can be thought of as having “manual” gamma correction
builtin. To seewhat theimage author intended, it is necessary to treat such images as having agamma
value of 1/2.2 (assuming the author was using a CRT).

In practice, image gammavalues around 1.0, 1/2.2, and 1/1.45 are al widely found. Older image standards
such as GIF and JFIF often do not account for thisfact. The exchange of images among avariety of systems
has led to widespread problems with images appearing “too dark” or “too light”.

PNG expects viewers to compensate for image gamma at the time that the image is displayed. Another pos-
sible approach isto expect encoders to convert al images to auniform gamma at encoding time. While that
method would speed viewers slightly, it has fundamenta flaws:

e Gamma correction isinherently lossy due to quantization and roundoff error. Requiring conversion at
encoding timethus causesirreversibleloss. Since PNG isintended to be alossless storage format, this
is undesirable; we should store unmodified source data.

e Theencoder might not know the sourcegammavalue. If thedecoder doesgammacorrectionat viewing
time, it can adjust the gamma (change the displayed brightness) in responseto feedback from a human
user. The encoder has no such recourse.

e Whatever “standard” gamma we settled on would be wrong for some displays. Hence viewers would
still need gamma correction capability.

Since there will always be images with no gamma or an incorrect recorded gamma, good viewers will need
to incorporate gamma adjustment code anyway. Gamma correction at viewing time is thusthe right way to

go.
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Historical note: Version 1.0 of this specification used the gAMA chunk to express the rel ationship between
the file samples and the “original scene intensity” (camera input) rather than the desired display output in-
tensity. Thiswas changed in version 1.1 for the following reasons:

e Thedecoder needs to know the desired display output in order to do itsjob, but there was not enough
information in the file to convert from the origina scene to the display output. The version 1.0 speci-
fication claimed that the conversion depended only on viewing conditions at the display, but that was
an error; it a'so depends on conditionsat the camera.

e Faithful reproduction of the origina scene is not dwaysthe goal. Sometimes deliberate distortionis
desired.

e For hand-drawn images thereisno “origina scene”.

Because the gamma-rel ated recommendations in version 1.0 were imprecise, it was not clear what value to
put in a gAMA chunk in common situations. For an image drawn on a CRT display with no LUT under
unknown viewing conditions, an argument could be made for any val ue between 40000 and 50000. Real ap-
plicationswere observed to write 45000 or 45455, and the | atter isrecommended by the current specification.

See Gamma Tutoria (Chapter 13) for more information.

12.8 Non-premultiplied alpha

PNG uses“unassociated” or “non-premultiplied” aphaso that images with separate transparency masks can
be stored losslessly. Another common technique, “ premultiplied alpha’, storespixel values premultiplied by
the apha fraction; in effect, the image is aready composited against a black background. Any image data
hidden by the transparency mask isirretrievably lost by that method, since multiplying by azero alphavaue
always produces zero.

Some image rendering techniques generate images with premultiplied a pha (the alpha value actualy rep-
resents how much of the pixel is covered by the image). This representation can be converted to PNG by
dividing the sample va ues by alpha, except where aphais zero. The result will look good if displayed by a
viewer that handles al pha properly, but will not look very good if the viewer ignores the alpha channel.

Although each form of al phastorage has itsadvantages, we did not want to require all PNG viewersto handle
both forms. We standardized on non-premultiplied al pha as being the ossless and more general case.

129 Filtering

PNG includesfiltering capability because filtering can significantly reduce the compressed size of truecolor
and grayscale images. Filtering is aso sometimes of value on indexed-color images, although thisis less
common.

Thefilter algorithms are defined to operate on bytes, rather than pixels; this gains simplicity and speed with
very little cost in compression performance. Tests have shown that filtering isusually ineffective for images
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with fewer than 8 bits per sample, so providing pixelwisefiltering for such images would be pointless. For
16 bit/sampledata, bytewisefilteringisnearly as effective as pixelwisefiltering, because M SBs are predicted
from adjacent MSBs, and L SBs are predicted from adjacent L SBs.

The encoder is allowed to change filters for each new scanline. This creates no additional complexity for
decoders, since a decoder is required to contain defiltering logic for every filter type anyway. The only cost
is an extra byte per scanline in the pre-compression datastream. Our tests showed that when the same filter
isselected for al scanlines, this extra byte compresses away to amost nothing, so there islittle storage cost
compared to afixed filter specified for thewholeimage. Andthe potentia benefitsof adaptivefilteringaretoo
gresat to ignore. Even with the simplistic filter-choice heuristics so far discovered, adaptive filtering usually
outperforms fixed filters. In particular, an adaptive filter can change behavior for successive passes of an
interlaced image; afixed filter cannot.

1210 Text strings

Most graphics file formats include the ability to store some textual information along with the image. But
many applications need more than that: they want to be able to store several identifiable pieces of text. For
example, a database using PNG files to store medical X-rays would likely want to include patient’s name,
doctor’sname, etc. A ssmpleway to do thisin PNG would be to invent new private chunksholding text. The
disadvantage of such an approach is that other applications would have no idea what was in those chunks,
and would simply ignore them. Instead, we recommend that textual information be stored in standard text
chunks with suitable keywords. Use of text tells any PNG viewer that the chunk contains text that might be
of interest to a human user. Thus, a person looking at the file with another viewer will still be able to see
the text, and even understand what it is if the keywords are reasonably self-explanatory. (To this end, we
recommend spelled-out keywords, not abbreviationsthat will be hard for a person to understand. Saving a
few bytes on akeyword isfalse economy.)

The ISO 8859-1 (Latin-1) character set was chosen as a compromise between functionality and portability.
Some platforms cannot display anything morethan 7-bit ASCII characters, whileotherscan handlecharacters
beyond the Latin-1 set. Wefelt that Latin-1 represents awidely useful and reasonably portable character set.
Latin-1lisadirect subset of character sets commonly used on popular platforms such as Microsoft Windows
and X Windows. It can aso be handled on Macintosh systems with a simple remapping of characters.

1211 iTXt

This section gives the reasoning behind some of the design decisionsin the i TXt chunk.

Keyword: Why not Unicode?

Unicode is too fancy for the keyword, which is intended for both machine and human consumption. Even
applicationswithout Unicode support should at |east be ableto understand the keyword (to selectively delete
chunks, for example).
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Keyword: Latin-1vs. ASCII

UTF-8 is used elsewhere in this chunk, and ASCII, unlike Latin-1, is compatible with UTF-8. Thereisa
translated keyword, so restricting the keyword to ASCII would not be a hardship. So why use Latin-1? Be-
cause all other existing chunks contai ning keywords use L atin-1, so applicationscan reuse codethey already
contain.

Compression flag and compression method: Why not combine them?

We have deliberately avoided defining a null compression method in the past (for tEXt/ZTXt), so that there
would be no temptation to useitin IHDR.

Languagetag:

It is not always clear how to render Unicode text unlessit is known what language is represented by the
text. Also, multipleiTXt chunks containing the same message in different languages could be present, and
a decoder could automatically select the one most appropriate for its user.

Translated keyword:

Registered keywords, like “ Description”, are registered only once, in a single language (probably English),
so that they can be recognized automatically. To beintelligibleto speakers of another language, atrandation
must be provided.

Text: Unicodevs. MIM E charset name

Including a MIME charset name would be more general, and alow the use of legacy character sets. But
support for Unicodeis growing, and allowing only Unicodeis conceptually simpler and likely to eventually
lead to greater interoperability.

UTF-8vs. UCS-2vs. UCS4

UCS-2isshort-sighted. Neither UCS-2 nor UCS-4 iscompatiblewith ASCII. UTF-8isboth backward com-
patible with ASCI| and forward compatible with UCS-4, and is generally the preferred encoding for inter-
change (as opposed to interna representation).
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12.12 PNG filesignature

Thefirst eight bytes of a PNG file always contain the following values:

(deci mal) 137 80 78 71 13 10 26 10
(hexadeci mal ) 89 50 4e 47 0d Oa 1la Oa
(ASCIlI C notation) \ 211 P N G \r \n\032\n

This signature both identifies the file as a PNG file and provides for immediate detection of common file-
transfer problems. The first two bytes distinguish PNG files on systems that expect the first two bytes to
identify the file type uniquely. Thefirst byte is chosen as a non-ASCII value to reduce the probability that
atext file may be misrecognized as a PNG file; also, it catches bad file transfers that clear bit 7. Bytestwo
through four name the format. The CR-LF sequence catches bad file transfers that alter newline sequences.
The control-Z character stopsfile display under MS-DOS. The final line feed checks for the inverse of the
CR-LF translation problem.

A decoder may further verify that the next eight bytes contain an IHDR chunk header with the correct chunk
length; thiswill catch bad transfers that drop or alter null (zero) bytes.

Notethat thereisno version number in the signature, nor indeed anywherein thefile, Thisisintentiona: the
chunk mechanism provides a better, more flexible way to handle format extensions, as explained in Chunk
naming conventions (Section 12.14).

12.13 Chunk layout

The chunk design allows decoders to skip unrecognized or uninteresting chunks: it is simply necessary to
skip the appropriate number of bytes, as determined from the length field.

Limiting chunk length to 23! — 1 bytes avoids possible problems for implementations that cannot conve-
niently handle 4-byte unsigned values. In practice, chunkswill usually be much shorter than that anyway.

A separate CRC isprovided for each chunk in order to detect badly-transferred imagesas quickly as possible.
In particular, critical data such as the image dimensions can be validated before being used.

The chunk length is excluded from the CRC so that the CRC can be calculated as the datais generated; this
avoids a second pass over the data in cases where the chunk length is not known in advance. Excluding the
length from the CRC does not create any extrarisk of failing to discover file corruption, sinceif the length
iswrong, the CRC check will fail: the CRC will be computed on the wrong set of bytes and then be tested
against the wrong vaue from thefile.

12.14 Chunk naming conventions

The chunk naming conventions allow safe, flexible extension of the PNG format. This mechanism is much
better than aformat version number, because it works on afeature-by-feature basisrather than being an over-
al indicator. Decoders can process newer filesif and only if the files use no unknown critical features (as
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indicated by finding unknown critical chunks). Unknown ancillary chunks can be safely ignored. We de-
cided against having an overall format version number because experience has shown that format version
numbers hurt portability as much as they help. Version numbers tend to be set unnecessarily high, leading
to older decoders rejecting files that they could have processed (thiswas a serious problem for severa years
after the GIF89 spec came out, for example). Furthermore, private extensions can be made either critical or
ancillary, and standard decoders should react appropriately; overall version numbers are no help for private
extensions.

A hypothetical chunk for vector graphicswould beacritical chunk, sinceif ignored, important parts of thein-
tended image would be missing. A chunk carrying the Mandel brot set coordinatesfor afractal imagewould
be ancillary, since other applications could display the image without understanding what the image repre-
sents. In general, achunk type should be made critical only if it isimpossibleto display areasonable repre-
sentation of the intended image without interpreting that chunk.

The public/private property bit ensuresthat any newly defined public chunk type name cannot conflict with
proprietary chunks that could be in use somewhere. However, this does not protect users of private chunk
names from the possibility that someone else may use the same chunk name for a different purpose. Itisa
good ideato put additional identifying information at the start of the data for any private chunk type.

When a PNG file is modified, certain ancillary chunks may need to be changed to reflect changes in other
chunks. For example, a histogram chunk needs to be changed if the image data changes. If the file editor
does not recognize histogram chunks, copying them blindly to a new output file is incorrect; such chunks
should be dropped. The safe/unsafe property bit allows ancillary chunksto be marked appropriately.

Not all possible modification scenarios are covered by the safe/unsafe semantics. In particular, chunks that
are dependent on thetotal file contents are not supported. (An example of such achunk isanindex of IDAT
chunk locations within the file: adding a comment chunk would inadvertently break the index.) Definition
of such chunksisdiscouraged. If absolutely necessary for a particular application, such chunks can be made
critical chunks, with consequent loss of portability to other applications. In general, ancillary chunkscan de-
pend on critical chunksbut not on other ancillary chunks. It isexpected that mutually dependent information
should be put into a single chunk.

In some situationsit may be unavoidable to make one ancillary chunk dependent on another. Although the
chunk property bits are insufficient to represent this case, a simple solution is available: in the dependent
chunk, record the CRC of the chunk depended on. It can then be determined whether that chunk has been
changed by some other program.

The same technique can be useful for other purposes. For example, if aprogram relieson the palettebeingin
aparticular order, it can store a private chunk containing the CRC of the PLTE chunk. If thisvalue matches
when thefileis again read in, then it provides high confidence that the palette has not been tampered with.
Notethat it is not necessary to mark the private chunk unsafe-to-copy when thistechniqueis used; thus, such
aprivate chunk can survive other editing of thefile.
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12.15 Palette histograms

A viewer may not be able to provide as many colors as are listed in the image's palette. (For example, some
colors could be reserved by awindow system.) To produce the best resultsin this situation, it is helpful to
have information about the frequency with which each paletteindex actually appears, in order to choosethe
best palette for dithering or to drop the least-used colors. Since images are often created once and viewed
many times, it makes sense to cal culate thisinformation in the encoder, athoughit is not mandatory for the
encoder to provideit.

Other image formats have usually addressed this problem by specifying that the pal ette entries shoul d appear
in order of frequency of use. That isan inferior solution, because it doesn’t give the viewer nearly as much
information: the viewer can’t determine how much damage will be done by dropping the last few colors.
Nor does a sorted palette give enough information to choose a target palette for dithering, in the case that
the viewer needs to reduce the number of colors substantially. A pal ette histogram provides the information
needed to choose such atarget palette without making a pass over theimage data.

13 Appendix: Gamma Tutorial

(Thisappendix is not part of the formal PNG specification.)

13.1 Nonlinear transfer functions

It would be convenient for graphics programmers if all of the components of an imaging system were linear.
The voltage coming from an electronic camera would be directly proportiona to the intensity (power) of
light in the scene, the light emitted by a CRT would be directly proportional to its input voltage, and so on.
However, real-world devices do not behave in thisway. All CRT displays, amost all photographicfilm, and
many el ectronic cameras have nonlinear signal-to-light-intensity or intensity-to-signal characteristics.

Fortunately, al of these nonlinear devices haveatransfer functionthat is approximated fairly well by asingle
type of mathematical function: a power function. This power function has the general equation

output = inputexponent

The exponent is often called “gamma’ and denoted by the Greek letter gamma.

By convention, i nput and out put areboth scaled totherange0to 1, with O representing black and 1 rep-
resenting maximum white (or red, etc). Normalized in thisway, the power function is completely described
by the exponent.

So, given aparticular device, we can measure itsoutput as a function of itsinput, fit a power functionto this
measured transfer function, and extract the exponent. People often say “this device hasagamma of 2.2" as
a shorthand for “this device has a power-law response with an exponent of 2.2". People also talk about the
gammaof amathematical transform, or of alookup tablein aframe buffer, if itsinput and output are related
by the power-law expression above.
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But using theterm “gamma’” torefer to the exponentsof transfer functionsof many different stagesinimaging
pipelineshasledto confusion. Therefore, this specification uses” gamma’ to refer specifically tothefunction
from display output to image samples, and simply uses “exponent” when referring to other functions.

13.2 Combining exponents

Real imaging systems will have severa components, and more than one of these can be nonlinear. If al of
the componentshave transfer characteristicsthat are power functions, then the transfer function of the entire
systemisalso a power function. The exponent of the whole system’stransfer function isjust the product of
al of theindividual exponents of the separate stagesin the system.

Also, stagesthat are linear pose no problem, since a power function with an exponent of 1.0 isredly alinear
function. So alinear transfer function isjust a special case of a power function, with an exponent of 1.0.

Thus, as long as our imaging system contains only stages with linear and power-law transfer functions, we
can meaningfully talk about the exponent of the entire system. Thisisindeed the case with most real imaging
systems.

13.3 End-to-end exponent

If the end-to-end exponent of an imaging system is 1.0, its output is proportional to itsinput. This means
that the ratio between the intensities of any two areas in the reproduced image will be the same asit wasin
the original scene. It might seem that this should always be the goal of an imaging system: to accurately
reproduce the tones of the original scene. Alas, that is not the case.

One complication is that the response of the human visua system to low light levels is not a scaled-down
versionof itsresponseto highlight levels. Therefore, if thedisplay deviceemitslessintenselight than entered
the capture device (asis usualy the case for television cameras and television sets, for example), an end-to-
end linear response will not produce an image that appears correct. There are also other perceptual factors,
like the affect of the ambient light level and the field of view surrounding the display, and physical factors,
like reflectance of ambient light off the display.

Good end-to-end exponents are determined from experience. For example, for photographic printsit’sabout
1.0; for slidesintended to be projected in a dark room it's about 1.5; for televisionit’s about 1.14.

13.4 CRT exponent

All CRT displayshave apower-law transfer characteristic with an exponent of about 2.2. Thisismainly due
to the physical processes involved in controlling the electron beam in the electron gun.

An exceptionto thisruleisfancy “calibrated” CRTs that have internal electronicsto alter their transfer func-
tion. If you have one of these, you probably should believe what the manufacturer tellsyou its exponent is.
But in all other cases, assuming 2.2 islikely to be pretty accurate.
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There are variousimages around that purport to measure a display system’s exponent, usually by comparing
the intensity of an area containing aternating white and black with a series of areas of continuous gray of
different intensity. Theseare usualy not reliable. Test imagesthat use a“ checkerboard” pattern of black and
white are the worst, because a single white pixel will be reproduced considerably darker than alarge area of
white. Animagethat usesalternating black and whitehorizontal lines (suchasthegamra. png testimageat
ftp://ftp.uu.net/graphics/png/images/suite/gamma.png) is much better, but even it may beinaccurate at high
“picture” settingson some CRTSs.

If you have agood photometer, you can measurethe actual light output of aCRT asafunctionof input voltage
and fit a power function to the measurements. However, note that this procedure is very sensitive to the
CRT's black level adjustment, somewhat sensitive to its picture adjustment, and also affected by ambient
light. Furthermore, CRTs spread some light from bright areas of an image into nearby darker areas; asingle
bright spot against a black background may be seen to have a“halo”. Your measuring technique will need
to minimize the effects of this.

Because of the difficulty of measuring the exponent, using either test images or measuring equipment, you' re
usually better off just assuming 2.2 rather than trying to measure it.

13.5 Gamma correction

A CRT has an exponent of 2.2, and we can't change that. To get an end-to-end exponent closer to 1, we
need to have at |east one other component of the “image pipeline” that is nonlinear. If, in fact, thereis only
one nonlinear stagein addition to the CRT, then it’straditional to say that the other nonlinear stage provides
“gamma correction” to compensate for the CRT. However, exactly where the “ correction” is done depends
on circumstance.

In al broadcast video systems, gamma correction is done in the camera. This choice was made because it
was more cost effective to place the expensive processing in the small number of capture devices (studio
television cameras) than in the large number of broadcast receivers. The original NTSC video standard re-
quired camerasto haveatransfer function with an exponent of 1/2.2, or about 0.45. Recently, amore complex
two-part transfer function has been adopted [SMPTE-170M], but its behavior can be well approximated by a
power functionwith an exponent of 0.52. When theresultingimage is displayed on a CRT with an exponent
of 2.2, the end-to-end exponent is about 1.14, which has been found to be appropriate for typical television
studio conditions and television viewing conditions.

These days, video signals are often digitized and stored in computer frame buffers. The digital image is
intended to be sent through a CRT, which has exponent 2.2, so theimage has agamma of 1/2.2.

Computer rendering programs often produce samples proportional to scene intensity. Suppose the desired
end-to-end exponent is near 1, and the program would liketo writeits samplesdirectly into the frame buffer.
For correct display, the CRT output intensity must be nearly proportional to the sample valuesin the frame
buffer. This can be done with a special hardware lookup table between the frame buffer and the CRT hard-
ware. Thelookup table (often called LUT) isloaded with a mapping that implements a power function with
an exponent near 1/2.2, providing “gamma correction” for the CRT gamma.
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Thus, gamma correction sometimes happens before the frame buffer, sometimes after. Aslong as images
created on a particular platform are always displayed on that platform, everything is fine. But when people
try to exchangeimages, differences in gamma correction conventionsoften result in images that seem far too
bright and washed out, or far too dark and contrasty.

13.6 Benefitsof gamma encoding

So, isit better to do gamma correction before or after the frame buffer?

In anideal world, sample valueswould be stored as floating-point numbers, there would be lots of precision,
and it wouldn’t really matter much. But in reality, we' re always trying to store imagesin as few bits as we
can.

If we decide to use samples proportional to intensity, and do the gamma correction in the frame buffer LUT,
it turns out that we need to use at least 12 bits for each of red, green, and blue to have enough precision in
intensity. With any less than that, we will sometimes see “contour bands” or “Mach bands” in the darker
areas of theimage, where two adjacent samplevaluesare still far enough apart inintensity for the difference
to bevisible.

However, through an interesting coincidence, the human eye's subjective perception of brightnessisrelated
to the physical stimulation of light intensity in a manner that is very much like the power function used for
gammacorrection. If we apply gamma correction to measured (or calculated) light intensity before quantiz-
ing to aninteger for storagein aframe buffer, we can get away with using many fewer bitsto storetheimage.
Infact, 8 bitsper color isalmost always sufficient to avoid contouring artifacts. Thisisbecause, sincegamma
correction is so closdly related to human perception, we are assigning our 256 available sample codes to in-
tensity values in a manner that approximates how visible those intensity changes are to the eye. Compared
to alinearly encoded image, we alocate fewer sample valuesto brighter parts of the tonal range and more
sample values to the darker portions of the tona range.

Thus, for the same apparent image quality, images using gamma-encoded sample values need only about
two-thirds as many bits of storage asimages using linearly encoded samples.

13.7 General gamma handling

When more than two nonlinear transfer functions are involved in the image pipeline, the term “gamma cor-
rection” becomes too vague. If we consider a pipeline that involves capturing (or calculating) an image,
storing it in an imagefile, reading the file, and displaying the image on some sort of display screen, there are
at least 5 places in the pipeline that could have nonlinear transfer functions. Let’s give a specific name to
each exponent:

camera exponent
the exponent of the image sensor

encoding exponent
the exponent of any transformation performed by the software writing the imagefile
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decoding exponent
the exponent of any transformation performed by the software reading the imagefile

LUT exponent
the exponent of the frame buffer LUT, if present

CRT exponent
the exponent of the CRT, generally 2.2

In addition, let's add a few other names:

display exponent
the exponent of the “display system” downstream of the frame buffer

di spl ay_exponent = LUT_exponent * CRT_exponent

gamma
the exponent of the function mapping display output intensity to file samples

ganma = 1.0 / (decodi ng_exponent * di splay_exponent)

end-to-end exponent
the exponent of the function mapping image sensor input intensity to display output intensity,
generaly 1.0to 1.5

When displaying an image file, the image decoding program is responsible for making gamma equal to the
value specified in the gAMA chunk, by selecting the decoding exponent appropriately:

decodi ng_exponent = 1.0 / (gama * di spl ay_exponent)

The display exponent might be known for this machine, or it might be obtained from the system software, or
the user might have to be asked what it is.

13.8 Some specific examples

In digital video systems, the camera exponent is about 0.52 by declaration of the various video standards
documents. The CRT exponent is 2.2 as usual, while the encoding exponent, decoding exponent, and LUT
exponent are al 1.0. Asaresult, the end-to-end exponent is about 1.14.

On frame buffersthat have hardware gamma correction tables, and that are calibrated to display samplesthat
are proportional to display output intensity, the display exponent is 1.0.

Many workstations and X terminals and PC clones lack gamma correction lookup tables. Here, the LUT
exponent is aways 1.0, so the display exponent is 2.2.

On the Macintosh, thereisaLUT. By default, it isloaded with a table whose exponent is 1/1.45, giving a
display exponent (LUT and CRT combined) of about 1.52. Some Macs havea“ Gamma’ control panel with
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sedlectionslabeled 1.0, 1.2, 1.4, 1.8, or 2.2. These settings load alternate LUTS, but beware: the selection
labeled with thevalue g loadsa LUT with exponent g/ 2. 61, yielding

di spl ay_exponent = (g/2.61) * 2.2

On recent SGI systems, there is a hardware gamma-correction table whose contents are controlled by the
(privileged) gamma program. Theexponent of thetableisactually thereciprocal of thenumber g that ganma
prints. You can obtain g from thefile/ et ¢/ confi g/ syst em gl GanmaVal and calculate

di spl ay_exponent = 2.2 / g

You will find SGI systemswith g set to 1.0 and 2.2 (or higher), but the default when machines are shipped
isl.7.

OnNeXT systemsthe LUT hasexponent 1/2.2 by default, but it can be modified by third-party applications.

In summary, for images designed to need no correction on these platforms:

Platform LUT exponent Default LUT exponent Default gAVA

PC cl one 1.0 1.0 45455
Maci nt osh g/ 2.61 1.8/2.61 = 1/1.45 65909
sa 1/ g 1/1.7 77273
Ne XT 1/ g 1/2.2 100000

The default gAMA values assume a CRT display.

13.9 Video cameratransfer functions

The original NTSC video standards specified a simple power-law cameratransfer function with an exponent
of 1/2.2 (about 0.45). Thisisnot possibleto implement exactly in anal og hardware because the function has
infinite slope at x=0, so al cameras deviated to some degree from thisideal. More recently, a new camera
transfer function that is physically realizable has been accepted as a standard [SMPTE-170M]. It is

if (Vin <0.018) Vout
if (Vin >= 0.018) Vout

4.5 * Vin
1.099 * (Vin%%) - 0.099

where Vi n and Vout are measured on ascale of 0 to 1. Although the exponent remains 0.45, the multipli-
cation and subtraction change the shape of the transfer function, so it is no longer a pure power function. It
can be well approximated, however, by a power function with exponent 0.52.

The PAL and SECAM video standards specify a power-law camera transfer function with an exponent of
1/2.8 (about 0.36). However, thisistoo low in practice, so real cameras are likely to have exponents close
to NTSC practice.
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13.10 Further reading

Charles Poynton's“ Gamma FAQ” [GAMMA-FAQ] is a excellent source of information about gamma, al-
though it claims that CRTs have an exponent of 2.5. See aso hisbook [DIGITAL-VIDEOQ].

14 Appendix: Color Tutorial

(Thisappendix is not part of the formal PNG specification.)

14.1 About chromaticity

The cHRM chunk is used, together with the gAMA chunk, to convey precise color information so that a
PNG image can be displayed or printed with better color fidelity than is possible without this information.
The preceding chapters state how thisinformation isencoded in aPNG image. Thistutoria briefly outlines
the underlying color theory for those who might not be familiar with it.

Note that displaying an image with incorrect gamma will produce much larger color errors than failing to
use the chromaticity data. First be surethe monitor set-up and gamma correction are right, then worry about
chromaticity.

14.2 The problem of color

The color of an object depends not only on the precise spectrum of light emitted or reflected from it, but also
on the observer—their species, what el se they can see at the same time, even what they have recently looked
at! Furthermore, two very different spectra can produce exactly the same color sensation. Color is not an
objective property of real-world objects; it is a subjective, biological sensation. However, by making some
simplifyingassumptions(such as: wearetakingabout humanvision)itispossibleto produce amathematical
model of color and thereby obtain good color accuracy.

14.3 Device-dependent color

Display the same RGB data on three different monitors, side by side, and you will get a noticeably different
color balance on each display. Thisis because each monitor emits a slightly different shade and intensity
of red, green, and blue light. RGB is an example of a device-dependent color model—the color you get
depends on the device. Thisa so meansthat a particular color—represented as say RGB 87, 146, 116 on one
monitor—might have to be specified as RGB 98, 123, 104 on another to produce the same color.
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14.4 Device-independent color

A full physical description of a color would require specifying the exact spectral power distribution of the
light source. Fortunately, the human eye and brain are not so sensitive as to require exact reproduction of
a spectrum. Mathematical, device-independent color models exist that describe fairly well how a particular
color will be seen by humans. The most important device-independent color model, to which all others can
be related, was developed by the International Commission on Illumination (CIE, in French) and is called
“CIEXYZ" or simply “XYZ".

In XYZ, X is the sum of a weighted power distribution over the whole visible spectrum. So are Y and Z,
each with different weights. Thus any arbitrary spectral power distribution is condensed down to just three
floating-point numbers. The weights were derived from color matching experiments done on human sub-
jectsin the 1920s. CIE XY Z has been an International Standard since 1931, and it has a number of useful
properties:

e two colors with the same XY Z values will ook the same to humans
o two colorswith different XY Z valueswill not look the same
e theY valuerepresentsal the brightnessinformation (luminance)

e the XY Z color of any object can be objectively measured

Color model s based on XY Z have been used for many years by people who need accurate control of color—
lighting engineers for film and TV, paint and dyestuffs manufacturers, and so on. They are thus proven in
industrial use. Accurate, device-independent color started to spread from high-end, specialized areas into
the mainstream during the late 1980s and early 1990s, and PNG takes notice of that trend.

145 Calibrated device-dependent color

Traditionally, image file formats have used uncalibrated, device-dependent color. If the precise details of the
origina display deviceare known, it becomes possibleto convert the device-dependent colors of a particular
image to device-independent ones. Making simplifying assumptions, such as working with CRTs (which
are much easier than printers), al we need to know are the XY Z values of each primary color and the CRT
exponent.

So why does PNG not store images in XY Z instead of RGB? Well, two reasons. First, storing imagesin
XY Z would require more bits of precision, which would make the files bigger. Second, all programs would
have to convert the image data before viewing it. Whether calibrated or not, al variants of RGB are close
enough that undemanding viewers can get by with simply displaying the data without color correction. By
storing calibrated RGB, PNG retainscompatibility with existing programsthat expect RGB data, yet provides
enough information for conversionto XY Z in applicationsthat need precise colors. Thus, we get the best of
both worlds.
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14.6 Chromaticity and luminance

Chromaticity is an objective measurement of the color of an object, leaving aside the brightnessinformation.
Chromaticity uses two parameters X and y, which are readily calculated from XY Z:

X1 (X+Y+ 2
Y/ (X+Y+ 2

X
y

XY Z colors having the same chromaticity values will appear to have the same hue but can vary in absolute
brightness. Notice that X, y are dimensionless ratios, so they have the same values no matter what units
we'veused for X, Y, Z.

The Y value of an XY Z color is directly proportional to its absolute brightnessand is called the luminance
of the color. We can describe a color either by XY Z coordinates or by chromaticity x, y plusluminanceY.
The XY Z form hasthe advantage that it islinearly related to RGB intensities.

14.7 Characterizing computer monitors

The “white point” of a monitor is the chromaticity x, y of the monitor’'s nomina white, that is, the color
produced when R=G=B=maxi num

It's customary to specify monitor colors by giving the chromaticities of the individual phosphorsR, G, and
B, plusthe white point. The white point allows one to infer the relative brightnesses of the three phosphors,
whichisn’'t determined by their chromaticities alone.

Note that the absolute brightness of the monitor is not specified. For computer graphics work, we generally
don’t care very much about absol utebrightnesslevels. Instead of dealingwith absolute XY Z values(inwhich
X, Y, Z areexpressed in physical unitsof radiated power, such as candel as per square meter), it isconvenient
towork in “relative XY Z” units, where the monitor’s nominal white istaken to have aluminance (Y) of 1.0.
Given thisassumption, it's simple to compute XY Z coordinates for the monitor’swhite, red, green, and blue
from their chromaticity values.

Why doescHRM useX, y rather than XY Z? Simply becausethat ishow manufacturers print theinformation
intheir spec sheets! Usually, thefirst thingaprogramwill doisconvertthecHRM chromaticitiesintorelative
XY Z space.

148 Usesfor XYZ

If aPNG file has thegAMA and cHRM chunks, the source RGB values can be converted to XY Z. Thislets
you:

¢ do accurate grayscale conversion (just use the Y component)

e convert to RGB for your own monitor (to see the original colors)
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print theimagein Level 2 PostScript with better color fidelity thanasimple RGB to CMYK conversion
could provide

e caculate an optimal color pal ette
e passtheimage datato a color management system

e clc.

149 Converting between RGB and XYZ

Make afew simplifying assumptionsfirst, likethe monitor really isjet black with no input and the gunsdon’t
interfere with one another. Then, given that you know the CIE XY Z values for each of red, green, and blue
for a particular monitor, you put them into a matrix M

Xr Xg Xb
M= Yr Yg Yb
Zr Zg Zb

RGB intensity samples normalized to therange 0 to 1 can be converted to XY Z by matrix multiplication. (If
you have gamma-encoded RGB samples, first undo the gamma encoding.)

X R
Y=MG
4 B

Inother words, X = Xr*R + Xg*G + Xb* B, and similarly for Y and Z. You can go the other way too:

R X
G=invMY
B Z

wherei nvMistheinverse of the matrix M

14.10 Device gamut

The gamut of a device is the subset of visible colors that the device can display. (It has nothing to do with
gamma.) The gamut of an RGB device can be visualized as a polyhedronin XY Z space; the vertices corre-
spond to the device's black, blue, red, green, magenta, cyan, yellow, and white.

Different deviceshave different gamuts, in other words one device will be ableto display certain colors (usu-
ally highly saturated ones) that another device cannot. The gamut of a particular RGB device can be deter-
mined from itsR, G, and B chromaticities and white point (the same values givenin the cHRM chunk). The
gamut of a color printer is more complex and can be determined only by measurement. However, printer
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gamuts are typically smaller than monitor gamuts, meaning that there can be many colorsin a displayable
image that cannot physically be printed.

Converting image datafrom one deviceto another generaly resultsin gamut mismatches—col orsthat cannot
be represented exactly on the destination device. The process of making the colorsfit, which can range from
asimpleclip to elaborate nonlinear scaling transformations, istermed gamut mapping. Theaimisto produce
areasonable visual representation of the original image.

Further reading
1411 Further reading

References [COLOR-1] through [ COLOR-5] provide more detail about color theory.

15 Appendix: Sample CRC Code

The following sample code represents a practical implementation of the CRC (Cyclic Redundancy Check)
employed in PNG chunks. (See also 1SO 3309 [1SO-3309] or ITU-T V.42 [ITU-T-V42] for aformal speci-
fication.)

The samplecodeisinthe ANSI C programming language. Non C users may find it easier to read with these
hints:

&
Bitwise AND operator.
Bitwise exclusive-OR operator.
>>
Bitwise right shift operator. When applied to an unsigned quantity, as here, right shift inserts
zeroes at the left.
!
Logical NOT operator.
++

N++ increments the variable N.

OxNNN
Ox introduces a hexadecima (base 16) constant. Suffix L indicates a long value (at least 32
bits).
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/* Table of CRCs of all 8-bit nessages. */
unsi gned | ong crc_tabl e[ 256] ;

/* Flag: has the table been conmputed? Initially false. */
int crc_tablecomuted = 0;

/* Make the table for a fast CRC. */
voi d make_crc_tabl e(voi d)
{

unsi gned | ong c;

int n, k;

for (n = 0; n < 256; n++) {
¢ = (unsigned long) n;
for (k = 0; k <8; k++) {
if (c &1)
c = 0xedh88320L ~ (c >> 1);
el se
c =c > 1;

crctable[n] = c;

}

crc_tabl econputed = 1;

}

/* Update a running CRC with the bytes buf[O0..len-1]--the CRC
should be initialized to all 1's, and the transnmitted val ue
is the 1's conplenment of the final running CRC (see the
crc() routine below)). */

unsi gned | ong update_crc(unsigned |ong crc, unsigned char *buf,
int len)
{

unsi gned long ¢ = crc;
int n;

if (!crc_tabl econputed)

make_crc_tabl e();
for (n =0; n < len; n++)

c =crc_table[(c ~ buf[n]) & Oxff] = (c >> 8);
}

return c;

}

/* Return the CRC of the bytes buf[0..len-1]. */
unsi gned |1 ong crc(unsigned char *buf, int |en)

{
return updatecrc(OxffffffffL, buf, len) =~ OxfffffffflL;

}
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16 Appendix: Online Resources

(Thisappendix is not part of the formal PNG specification.)

Thisappendix givesthe locationsof some Internet resources for PNG software devel opers. By the nature of
the Internet, thelist isincomplete and subject to change.

Archive sites

Thelatest released versions of this document and related information can always be found at the PNG FTP
archive site, ftp://ftp.uu.net/graphics/png/. The PNG specification is available in severa formats, including
HTML, plain text, and PostScript.

Reference implementation and test images

A reference implementation in portable C is available from the PNG FTP archive site,
ftp://ftp.uu.net/graphics/png/src/.  The reference implementation (libpng) is freely usable in all appli-
cations, including commercial applications.

Test images are available from ftp://ftp.uu.net/graphi cs/png/images/.

Electronic mail

The maintainers of the PNG specification can be contacted by e-mail at png-info@uunet.uu.net or at
png-group@w3.0rg.

PNG web site

There is a World Wide Web site for PNG at http://www.cdrom.com/pub/png/. Thisis acentral location for
current information about PNG and PNG-related tools.

17 Appendix: Revision History

(Thisappendix is not part of the formal PNG specification.)

The PNG format has been frozen since the Ninth Draft of 7 March 1995, and al future changes are intended
to be backward compatible. The revisions since the Ninth Draft are simply clarifications, improvementsin
presentation, additions of supporting material, and specificationsfor additional chunks.

On 1 October 1996, the PNG 1.0 specification was approved as aW3C (World Wide Web Consortium) Rec-
ommendation.
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In January 1997 it was published as RFC-2083 (informational) with technical content identical to that of the
W3C Recommendation.

In October 1998, the PNG 1.1 specification was approved by the PNG Devel opment Group, and it was re-
leased in December 1998.

In February 1999, changes were approved by the PNG Development Group, and the PNG 1.2 specification
containing the changes was released in July 1999.

Changessinceversion 1.1

Note: These changes have been approved by the PNG Development Group, but not by any standards body.

e Added theiTXt chunk
¢ Rearranged the order of presentation of ancillary chunks.

e Updated the authors' email addresses

Changessinceversion 1.0

(W3C Recommendation 01-October-1996, RFC 2083 January 1997)
Note: These changes have been approved by the PNG Development Group, but not by any standards body.

¢ Redefined gAMA to beintermsof thedesired display output rather than the original scene, and revised
all discussions of gamma and references to gamma accordingly

e Added theiCCP sPLT, and sRGB chunks

¢ Extended the scope of the 31-bit limit on chunk lengths and image dimensionsto apply to all four-byte
unsigned integers, and disallowed the value —23! in four-byte signed integers

e Mentioned the possibility of dithering the alpha channel when converting it to binary transparency
e Clarified that zlib window sizes smaller than 32K are valid
e Updated the PNG web site URL and authors' email addresses

e Editing and reformatting

Changessincethe Tenth Draft of 5 May 1995

¢ Clarified meaning of a suggested-palette PLTE chunk in atruecolor image that uses transparency
e Clarified exact semantics of sBIT and allowed sample depth scaling procedures
e Clarified status of spacesin text chunk keywords
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e Distinguished private and public extension valuesin type and method fields

e Added a“Creation Time” text keyword

e Macintosh representation of PNG specified

e Added discussion of security issues

e Added more extensivediscussion of gamma and chromaticity handling, including tutorial appendixes
¢ Clarified terminology, notably sample depth vs. bit depth

e Added aglossary

e Editing and reformatting
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